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This work describes a set of programs which implements a bottom-up

artifact modeling and recognizing system. This system is implemented on

a DEC KI-10 in BLISS -O, MACRO-10, and FORTRAN. Sequences of

stereoscopic pairs of images are digitized, frame by frame condensed to

vertex-strin&-surface graphs (V-S-S graphs), and re-encoded as nalf

chunk graphs (H-C graphs). The single frame processing requires

approximately 20 minutes per image. Single image derived H-C graphs are

matched by stereo pairs for depth, and by time interval pairs for

motion. By using depth cues, motion cues and intensity feature labels,

individual object subgraphs are segmented. Individual object graphs are

L matched with and/or entered into an object graph library.

We describe two new edge detection algorithms, an edge-based region

aggregation algorithm, a scan line oriented vertex-string encoding

algorithm, a half chunk graph matching algorithm, and a histogram-based

graph matching algorithm. We also introduce the idea of the "half

chunk", an elemental curvature element which can be used to form scale

and coordinate system invariant object graphs (or "feature" centered

object models).
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Chapter 1

Motivations and Strategies

1.1 Motivations

This thesis consists of discussions of several operational programs

which together embody an artifact recognition system. According to the

Americall Deritige gL a =e.nlI Languaze, an artifact is:

"An object produced or shaped by human workmanship; especially, a

simple tool, weapon, or ornament of archaeological or historical

interest."

We use the word artifact to mean a constructed object. As such, we

design it to take a specific shape. Our visual recognition system is

therefore designed to extract and manipulate shape related models of

objects. These models are "discontinuity"-based. We encode objects as

a cloud of discontinuity points (each carrying property lists which

allow point to point comparisons) which are interconnected into graphs.

The links between discontinuities represent relationships into which the

connected points enter.

Recognition of a thing or a relationship, in the case of machine

intelligence, can be defined as "instantiating" that thing or

relationship. By this we mean producing a machine state which

represents the thing or relationship. In our system, this state comes

Ii
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about by detecting critical primitive components (edges, regions,

contours, etc.), encoding them as atomic quantities (building primitive

data blocks in memory with feature vectors describing specific component

variations), and forming relationships between these atoms (building

graph structures which represent objects and object groupings).

In this work we have proposed and implemented a variety of specific

algorithms for specific recognition and detection problems, however the

primary contribution made has been the integration of many different

processing steps into a bottom-up, model-based vision system. We began

our design assuming that top-down processing was desirable for actual

object cognition. To perform a model directed parsing, we decided it

would be necessary to get initial correspondences from models to scenes

via some bottom-up process. This bottom-up process, as it became more

and more powerful, eventually became the entire recognition system.

While we do not totally debunk top-down systems, we simply point out

that carefully constructed bottom-up processing, with allowances for

multiple interpretations, can perform recognition (as sensors become

better, computers become faster, and algorithms more powerful).

Whereas, top-down algorithms always require bottom-up starter processes.

1.2 Strategies

Our early visual processing is single image based. We have found

that processing on the actual image arrays is the most efficient way to

perform local convolution operations. But, because any operation

performed uniformly over an entire retinal field (in our case nominally

256x256) is very slow for serial computers (it takes approximately 8

seconds for our DEC KI-1O to sweep through an image array for averaging U
operations), we wish to move into more abstract spaces quickly (into

spaces described by image graphs).

We begin by performing edge detection (Chapter 2). We have

invented two new edge detectors which allow detection of sharp and p
diffused intensity transitions. We have also evaluated these two

detector schemes along with some other techniques described in the
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literature. Our techniques are good for detecting shadow and object

boundaries in a noisy environment, if the noise statistics are known and

sufficiently below the level of significant intensity changes. these

restrictions apply readily for vidicon and solid state visual band

mosaic sensors.

Following edge detection, we segment regions by convolving

homogeneity operators with the edge detected images. We use the absence

of edges in an area to form connected regions. In effect, we fill in

broken edge chains which enclose compact areas, and generate some

classes of subjective contours (Chapter 3). We then use a scan line

based (non-following) algorithm to find vertex points and build contour

strings. These strings are smoothed and written as

vertex-string-surface graphs (V-S-S). The contour encoding is made

simpler by the presence of accurate region assignments prior to boundary

extraction.

Color images can be processed by performing three times as much

work prior to region and vertex-string processing (by edge detecting on

red, green, and blue images - superimposing the results). For textured

scenes s *ificantly more processing is required. Rough areas are

transformed into smoothed areas in new images. These images are re-edge

detected. The new edge data is precipitated into the old edge images

from the original intensity image (after edges in rough regions have

been removed). Therefore, the amount of additional processing for

texture data is proportional to the number of individual texture

smoothing processes implemented (for a good texture system probably 15

to 100 times more processing would be required).

Following V-S-S formation from single images, we no longer operate

on the sampled image space. We transform the V-S-S graph into a half

chunk graph (H-C). The half chunk graph encodes scenes as

interconnected elemental curvature elements (the half chunks), each

having a property list contain image intensity properties and spatial

properties (positions, tangents, and tangent changes). For the domain

of artifacts, these curvature elements contain the critical object
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features required for recognition, and allow object encodings resistant

to changes in viewing angle. We correlate feature groupings between

pairs of H-C graphs for depth and motion information (Chapter 4). The

result of each graph matching is a transform which takes one graph

dimensionally into the other, and a new fused graph which is made by

merging as many compatible features as possible between the input

graphs.

Following graph matching many object subgroupings have been

disassociated (parts of single objects are connected in depth and nave

common motion transforms, however parts of different objects tend to be

disconnected or do not move together). To further disassociate object

groupings a "Waltz-like" labeling scheme is employed. This process is

based on vertex and region labeling. Labels are constrained by semantic

types and measured boundary feature properties (Appendix D).

Our object recognition program operates on H-C graphs which are

assumed to be single objects (or descriptive fragments of single

objects). The advantage of the H-C graph for object modeling is that it

is "feature" centered rather than "object" centered. The graph is scale

and coordinate system invariant (Chapter 5). We match object H-C graphs

by extracting histograms of subgraph components between input graphs and

graphs stored in an object library. These histograms are then compared.

It is proposed that objects be modeled as the histograms alone. It is

also proposed that the H-C graphs be directly generated from edge data

(without the intermediate step of V-S-S graph formation).

F'
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Chapter 2

Two New Edge Detectors

2.1. Introduction

We have done extensive experimentation in low-level, bottom-up

segmentation and have found edge detection based techniques to be very

tractable from both theoretical and practical standpoints. We have in

the process of this work designed two interesting detection methods, one

difference-based and the other adaptive threshold based. These

techniques are desirable because they find "thin" edge strings (i.e.

unlike strict gradient-based approaches where thick bands of edge data

are generated), they may be tuned to give good signal/noise ratios for a

variety of edge transition sizes and image noise statistics, edge

position may be computed to greater precision than the basic pixel size,

and implementation is efficient in hardware or software. Our techniques

are based on the application of arrays of ege detectors, each sensitive

to a different group of edge types. An algorithm for selecting the most

appropriate detector response in a particular region is used to

consolidate the results for all detectors.

. .. . I ... ... i . .. . .. .. . ... . .. . ... .. . .. .. ... .. . " -
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2.2. Related Work

Most of the work in low-level visual segmentation can be grouped

into one of five main categories. These are segmentation by feature

histogram, by region-based processing, by gradient-based edge detection,

by edge detection with non-maxima suppression, and by edge template

matching. Our work has elements of last two techniques.

The classic work in the area of visual segmentation by histogram

based techniques was done by Ohlander (45]. In his work, one

dimensional histograms of various color features were partitioned using

a heuristic concept of histogram peak "goodness" (a combination of peak

shape and isolation). Then the partitions were reprojected into image

space to generated the required object partitions. Similar work has

been done by Schacter, et al. 156) and Hanson £20), using two

dimensional histograms, with similar results.

These histogram-based techniques allow good results for some cases,

however they ignore some fairly important problems. First, it has been

our experience that camera systems tend to have slow, uniform intensity

variations over the retinal area which are not caused by lighting or

object reflectance. In color Imaging, this variation does not track

vell from color spectrum to color spectrum. What is worse, the

amplitude of the variations may change with overall ambient lighting.

In summary, all the points associated with a given surface may not give

rise to a well defined peak in the histogram space. Obviously,

histogram peak selection can then break down.

A tacit assumption of histogram-based techniques is that there is a

one-to-one relationship between histogram peaks and object surfaces.

Under this assumption, each peak may be thought of as an independent,

unimodal feature distribution function, and peak selection is simply the

identification of the parameters of the distribution. The basic problem

in histogram tecnniques can be traced back to this assumption. While in

many cases each peak is predominantly from a single object surface, we

nave absolutely no guarantee that this Is the case. When it is not,

- .7. -
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histogram techniques are not valid.

Region-based techniques have been used by Brice and Fennema [6],

Tenenbaum [60), Feldman and Yakimovsky [I14, and others. The basic

approach consists of selecting a region seed point (possibly any point,

or alternatively some archetypical point), and adding adjacent

unassigned points minimizing some difference criterion. Region-based

techniques are theoretically equivalent to edge base techniques except

to the extent that they incorporate higher level information. Without

this high level information the contours generated between regions will

exactly coincide to contours of maximum difference (the same as the

contours generated by a non-maxima suppressing edge detection scheme).

Brlce and Fennema incorporated a figure "goodness" criterion by allowing

region boundaries to grow at a constrained rate. Tenenbaum uses a

semantic criterion in addition to simple intensity Information to order

merging. Feldman and Yakimovsky incorporate a Baysian decision

technique into their region-based system.

We feel that the initial feature extraction phase of processing is

not the place to incorporate high level knowledge. If this is done, it

becomes difficult to evaluate performance and detracts from overall

low-level system generality. The system starts seeing what it wants to

see, rather than what is actually there.

We have expanded edge detection based attacks on the segmentation

problem into three different approaches because each represents a

slightly different view of what an "edge" is. In the pure gradient

approach, an edge is a high gradient point. This view of things goes

back at least to Roberts [51], and has persisted in work by O'Gorman and

Clowes [46], Shiral [58), and others. The problem with this idea of an

edge is that over a thick band at surface-surface interfaces we get high

gradient points.

Rosenfeld [52][53] and Burr [7) consider an edge point to be where

the maximum (minimum) gradient occurs. This maximum point suppresses

all non-maxima in some area of influence around itself. Rosenfeld, as



T.-= -57 7 Z

an additional refinement, sweeps the image with operators of ascending

size (lxl, 2x2, 4x4, 8x8, etc.) to average over random textures. His

multiple operator scheme supresses non-maxima over eacn seot of operators

of a given size. Then over each area, the largest operator giving i

strong gradient is selected, suppressing smaller operators in the same

area. In Rosenfeld's paper it can be seen that in textured environments

this approach has the desired effect. However, in the domain of machine

parts, where objects themselves display fine detail, Rosenfeld's

algorithm for multiple edge detection does not work. It is to this

problem we address ourselves.

An alternative definition of an "edge" is any intensity pattern

which fits an "edge" template. The discrete difference mask used by

Roberts could Oe viewed as a trivial template. Selection of a maximum

point could be viewed as selecting a point where the difference template

correlates with the image maximally. Several operators of a more

complex nature come about by viewing edges in this light.

The operators of Yakimovsky assume edges are interfaces between

sets of points, each set being described by a normal distribution. rhe

mathematics for distribution parameter comparison is used to form a

function of edge strength in an area.

2.2.1. ______orI

where :

S.= variance for both neighborhoods taken together

+ + m 41M V+ M

NI 2 mean for both neighborhoods taken together

( MAi i.+ ps eA/n R )

Mp#, I samples, mean, variance for neighborhood 1

PiP ?.6 1 samples,. mean, variance for neighborhood 2
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We have, for comparison purposes, programmed an operator of this

sort with non-maxima suppression, using the neighborhood shapes proposed

in [66). It should be pointed out that the operator of Yakimovsky is in

fact a superposition of the standard expressions for comparing means
£303,

3 0 , 2 .2 .2 . < 
t 4 2.Mt l )

and comparing standard deviations,

2.2.3. :S ,o

This points up some problems. The mean comparison component

behaves well when the operator is not centered on an edge interface (the

mean comparison is more or less a finite difference, therefore an

approximation to the gradient). However, the sigma component peaks at

interfaces where standard deviation changes and on both sides of ones

where the mean changes. This can cause false edges to be detected. The

statistical assumption of two independent distributions is valid only

right on surface-surface interfaces.

The operator of Hueckel (22][23][24] comes about by expressing a

family of templates in terms of an orthonormal family of functions. We

have programmed a version of the original operator, but have been

thoroughly disappointed with the results. From the paper of Hero (43)

it can be seen that the Hueckel type approach can be done with different

basis functions quite efficiently. We have reason to believe that the

original basis functions of Hueckel are less than satisfactory and the

ones proposed by Mero are more advantageous. Using these basis
functions it was shown that the Hueckel type operator is more or less

equivalent to a gradient. It should be pointed out that like the

gradient, on gradual intensity slopes thick edges (more than a single

point wide) occur. Also, angular resolution for this type of detector

turns out to less than one might expect.

I
* L
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The point to be drawn from the previous discussions is that most of

the techniques proposed do not differ substantially from a theoretical

point of view. Practically, performance is more a function of operator

geometry and image noise statistics than the models selected for edge

strength computations (all model thus far discussed eventually reduce to

subtraction of neighborhoods). Our system uses a variable geometry to

average over image noise.

2.3. Difference-Based Multiple Operator Technique

This edge detection system is based on the simple step edge

detector. Detection of steps, that is, places where intensity

distributions each having different means meet, can be accomplished

optimally by simple differencing. The basic difference is then scaled

by a factor involving the standard deviations of the two distributions

or heuristically, a term based on the variation around the mean change

(see formula 2.2.2). The formula may be slightly modified as follows if

we assume equal neighborhood sizes and take 6= =I (the standard

deviation for the overall image).

2.3.1. 5 a I +--P mA. -2.,7(k --I

2.3.2. [ I4 Ay.

As noted in section 2.2 using the moments 6, and t, to characterize

texture is dubious because these terms respond very strongly also to

mean variations, therefore we feel it reasonable to simply do the above

scaling. If we assume t as the threshold for neighborhoods consisting

of a single measurement then for neighborhoods consisting of rt

mesurements we expect the following:

2.3.3 is the result we would expect for purely Gaussian

distributions, however our work indicates that the square root law

actually generates thresholds that are too low. As a fix we can choose:

2.3.4. 7



For our imaging System we hiave found thresholds plotted as boxes in

Figure 2.1 are quite good (kzQ.6). The .onstant kc can be considered thie

degree to whlich difference due to "noi.se" accumulates linearly rather

* I than~ normally.

D ifference ThresholId
S2.212

48.1212

44.312

Sample Operator

32.661

28.00

24.012

26.06

12.6
..........

........... ....

N- Ne Ighborhood Size

* Plot of T (Edge Detection Threshold) vs. N (Sample Size)

Figure 2.1

As is the case for any difference-based detector, there will

typically be several adjacent Points wnere edge strength 1.3 greater tnan

T. 4e only want tbands Of width one. To accomplish this we observe that

What goes UP must come down, or the value of X in 2.3.1 alternates sign
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for each new step. A peak is recognized as all the points where X is

greater than zero, or all the points where X is less than zero. The

center of the peak is either its absolute maximum or its center of mass

(generally either measure is relatively noise free and nearly located at

the same position). The center of mass method is better in that it

allows positioning more finely than the basic pixel size. Both methods

yield edges of width one.

The use of relative maxima rather than absolute maxima thinning has

been used extensively and is really at the heart Rosenfeld's notion of

non-maxima suppression. The problems of using pure relative maxima

techniques is clearly shown in Figure 2.4. In Figure 2.2 we show an

intensity profile. Figure 2.3 shows peak selection using either the

center of mass method (CM) or the absolute maximum method (MAX-MIN).

Figure 2.4 shows multiple peaks detected where only one should be using

relative maxima detection.

=i

I

Ul
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Figure 2.2. Intensity Profile
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Figure 2.4. Difference With Relative Maximum Peaks Marked
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In short, the single detector indicates one edge per peak for any

peak having points with an edge strength greater that T. We have thus

far restricted our discussion to one dimensional step detection. To .

expand to two dimensions, the one dimensional edge detectors are swept

along each horizontal and vertical line, generating two basic edge

directions (more orientations may be used in principle, however two is

the minimum required).

The sweeping operation is performed for several sized operators at L
the same time, the larger differences being incrementally computed from

the smaller ones (Figure 2.5). Larger sized differences allow more

discrimination. for diffused broad intensity transitions, such as those

found in shadows cast by non-point sources and highlights. The fastest

transition detector that has strength greater than its corresponding T

marks the edge position. All detections from larger detectors are

disabled to prevent feature smearing. Many low contrast contours can be

discriminated only by detectors using many cells averaged (note Figure

2.1, the larger the operator sample the lower the effective threshold T

per sample). Also the marking detector index number becomes the edge

diffusion size (proportional to the edge peak width). Figure 2.6 shows

a typical intensity profile. Figure 2.7 shows the output of a small

detector. Figure 2.8 shows that a larger detector is able to pull more L
contours out of the background noise than the smaller one (Figure 2.7).

~
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The preference towards small detectors is analogous to Marr's

requirements of edge isolation, in the generation of his primal sketches

C32]1331135] (really edge detected images). We wish the simplest

explanation of intensity phenomena. ro accomplish tnis we need to

assume minimum interaction between edge detector outputs, i.e. isolated

edge steps. The simplest way to minimize detector overlaps is to use

the smallest detectors that give non-noise detections. If two small,

isolated detectors fire (i.e. two successive edges), and over the same

region, one larger detector fires, the simplest explanation is that the

large detector is firing due to both small edges. Figure 2.9 shows now

an operator can be large enough to smear together isolated edges.

Diff

0.0 . . . . . .. . . . . .

-16.0 Previously
Ualaated

-32.0 ds

0.0 100.0 M0.0

Pixels

An Operator Large n ouh To Smear Edges
Difference, Size=12

Figure 2.9

We may adjust the noise model (method of computing T for eacn

detector) and the range of detectors (typically sizes 1 through 5) to

fit a wide variety of imaging systems. It is our experience that this
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is a shortcoming of most other detection schemes. Contrasting this

system and the system proposed by Rosenfeld [52][531 several major

differences are apparent. In our scheme operator sizes are chosen in a

linear sequence rather than a geometric one. The smallest operators

have proportionally more influence than the larger ones, rather than the

other way around as in the Rosenfeld scheme. In our system, low

amplitude, random texture is ignored via an image noise model. We also

characterize the size of the transition region for the intensity change.

2.4. Adaptive Threshold Multiple Operator Technique

After getting good results from the previous system of edge

detection we wondered if we could get better results after some form of

second order image enhancement. To our chagrin, the results were much

worse. This was because the enhancement caused ringing at strong

intensity steps. This ringing was picked up as "peaks" in the

difference space and therefore caused multiple edges when of sufficient

amplitude. These problems caused us to consider a non-differential

approach to edge detection which is interesting for several reasons.

First, the implementation is extremely fast and extremely simple. Peak

selection and thinning are almost trivial. And last, the detection

scheme has very nice biological analogs (works better with more

enhancement, displays mach-band responses).

The first step is to compute from an input image a "fast" image and

a "slow" image. The slow image is formed by computing the average

intensity of a large neighborhood (in our case 20 by 20) centered at

each cell. This picture is basically an artificially defocused image.

It may be thought of as a "threshold" picture where each cell is 

proportional to the average light level in the larger neighborhood.

The fast picture is an edge enhanced picture. We do the

enhancement in the X and Y directions independently using the function

in Figure 2.10 evaluated at every cell position along a line orthogonal a
to the direction of the edges being extracted.
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Enhancement Function
Figure 2.10

The slow picture Is then subtracted cell-wise from the fast

picture, generattng a new picture which is zero in homogeneous regions

and at edges, non-zero around edges. At this point we have computed a

quantity analogous to the "lightness" proposed by Horn In [211, when we

consider that the subtraction is actually comparable to a division

because of our Imaging system. This system has a log of light-level

response (Figure 2.11 - thIs is enerally true for vid:con Imagers).

This picture is then thresholded at plus or minus some threshold T. All

cells witn value V, -T < V < r are set to CO. Cells witn value V, V > T

are set to 01, and cells with value V, V ( - are set to 10. In this

way we obtain a three level picture (10,00,01).

L
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Edge extraction along a line now becomes a simple binary pattern

matching process. An edge may now be expressed as:

2.4.1. <01><00 00 ... 00 00><10>

or

<10><00 00 ... 00 00><01>

The central string of 00 codes may have length zero for the fastest

transition edges, or up to N where N is the longest acceptable

transition. The leading 01 or 10 codes may be repeated. The first

pattern corresponds to a negative going edge, the second, to a positive

going edge. For each size edge template (sizes 1 to N), we sweep the

three level pictures in the X and Y directions. We light a bit over

each position where an edge template matches (there are N bit planes,

one for each size template). Figure 2.12 shows an Intensity profile,

the defocused intensity profile, and the enhanced intensity profile.

Figure 2.13 shows the subtracted profile, with peak areas marked(.O-

three level data).

'.

f
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As indicated earlier, peak selection and thinning in the edge bit

planes is trivial. Any cell In a given bit plane belonging to a string

of edge points of length greater than two should be ignored. (There

will be edges from edge templates with fewer 00 codes narking the step,

having a run length of two or one. This 1s an isolation condition,

analogous to small edge detectors preempting Larger ones in our

difference-oased tecnnique.) If a string of two is encountered, the

position of the actual edge is between the two marks. If a singleton

string alone is present, it directly marks the edge. We simply record

mark position for edge position and bit plane index for transition

region size. A hypothetical hardware Implementation for one line of

detectors is quite illuminating (Figure 2.14). We think the similarity

in geometry between this structure and ones observed In biological

visual systems is interesting.

1.

L
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Mach band response in th.s detector scheme comes about as a result

of the second order enhancement used in generating the "fast" image.

rhis enhancement causes the results in Figures 2.15-2.16, when the ramp

breakpoint is sufficiently great to produce peaks of greater amplitude

than T (threshold marked in Figure 2.15).

7
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Figure 2.17 shows the images from which previously displayed

intensity plots were derived. White lines mark the various slices.

Figures 2.2-2.4 Figures 2.6-2.9

Figures 2.12-2.13 Figures 2.15-2.16

Images Used For Intensilv Plots
Figure 2.17

2.5. Performance Evaluations

To test the relative merits of our two edge detection schemes and

those of several other researchers, we have prepared several

characteristic test images. The first six are computer generated

intensity ramps, one set of three vertically oriented (Figures

2.18-2.20), and the other set of three diagonally oriented (Figures

2.21-2.23). The first in each triple has no additive noise. The second

has Gaussian noise of S=0.5 (nominally the noise Induced in a

quantization system - the noise levels encountered in our real images).

The last in each set have Gaussian noise of S=1.0. These pi.ctures test

noise immunity, the degree to which edge detectors can follow diffusing

steps, and to a limited extent, orientation bias.
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We have also digitized some characteristic images taken in our

laboratory to test the various edge detection techniques under more

practical conditions. These images are 252x238x6 bits and have

typically +1 or -1 level random intensity variation (occasionally +2 or

-2). Figure 2.24 tests repetitive edge detections. Figure 2.25 tests

the degree to which orientation and operator size biases affect small

bodies. Figure 2.26 tests interactions between edges of different

orientations. Figure 2.27 tests operator performance in a scene with a

wide range of intensity values and edge transition sizes (highlights,

shadows, object-object, object-ground interfaces).

For the tests we have implemented, in addition to our two detection

schemes, a Hueckel operator (23], a faster Hueckel-like operator (43], a

Yakimovsky operator (66] with non-maximum suppression, a Rosenfeld

non-linear operator £52][53], and a simple gradient detector with

non-maximum suppression [7]. The rules of the game are as follows.

Each detector is tuned using the S=0.5 artificial pictures so that

performance is acceptable. If not acceptable, at least as good as

possible. Then the operator is applied to all the other test pictures

using the same confidences and thresholds.

We intend the reader to examine the various edge pictures and draw

his own qualitative opinions on the relative merits of the various

techniques tested, however we offer some discussion of our results and

several quantitative measures (these for the constructed images). Table

2.1 tabulates correct and incorrect edge densities for each operator.

table 2.2 tabulates the length of diffused contour followed by each

operator (1.0 if contour is followed across the entire test picture).

Table 2.3 tabulates positional variation for edges per unit length along

the diffused ramp. Table 2.4 suggests the minimum stripe size an

operator can detect without smearing (size in pixels).

IU
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TAble 2.1 i. M Densities

Operator False Detections True Detections
Name Per Unit Area ** Per Real Edge*

Hueckel 0.03 0.34
Psuedo-H#'* 0.0005 0.56
Yakimovsky 0.004 0.73
Burr 0.02 0.19
Rosenfeld 0.0005 1.0
Diff.** " 0.002 0.97
Adapt.**** 0.03 0.19

Note that True Detections Per Real Edie also reflects
sensitivity of the specified operator to diffused ramps (some
operators nave trouble following the diffusing ramp very far,
therefore score poorly).

" This reflects ambient noise level in the S=1.0 pictures
(non-central ramp edges - i.e. edges that should not be
detected).

i,' Hueckel-like Operator (Appendix A).

"'I* Difference-based Multiple Operator.

""' Adaptive Threshold Multiple Operator.

Table 2.2. & FollowInz Lengths

Operator Diagonal Length* 1 Vertical Length

Hueckel 0.2 0.4
Psuedo-H 0.2 0.62
Yakimovsky 0.47 0.77
Burr 0.19 0.19
Rosenfeld 1.0 1.0
Diff. 1.0 1.0
Adapt. 0.19 0.2

* Lengths are scaled by total diffused contour length.

Table 2.3. Positional Variation Alo Dffustn Ramp

Operator 1 Positional Variation*

Hueckel 0.09
Psuedo-H 0.11
Yakimovsky 0.15
Burr 0.20
Rosenfeld 0.09
Diff. 0.00
Adapt. 0.05

Distance variation orthogonal to diffused ramp scaled by ramp
length.
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Operator Stripe Width 'Cells)

Psuedo-H
!akimovsky
Burr
Rosenfeld -20*
Diff. I***
Adapt. 30

* Set by basic neighborhood size.

** Set by smallest neighborhood size. Note, however, due to large
operator preference, many times operation in areas with small
strips is dictated by the largest neighborhood. In this
implementation 16x16.

**' Set by smallest neighborhood size.

2.6. Sensitivity, Noise Immunity, and Shape Deformation

If by sensitivity, we mean ability to detect gradual gray scale

transitions, clearly the Rosenfeld, Takimovsky, and our difference based

operators are the best. The Yakimovsky does well because of a large

neighborhood size. This will be a draw back in detecting smaller

features in scene. Both our operator and Rosenfeld's do well in the

domain of diffused lighting because they both have the ability to

average over large areas, thus detecting small gradual changes. The

Huecel and Hueckel-like operators are a disappointment. With such

large neighborhoods (9x9) one would hope for better gradual slope

detection. Possibly, this can be explained by considering that these

operators are quite finely tuned to detect step changes. The gradual

slope generate too low a confidence step.

In the real pictures, the results with respect to sensitivity seem

to corroborate those from the artificial images. The Hueckel and

Hueckel-like operators are universally less sensitive than the various

difference-based operators (Diff., Adapt., Rosenfeld, and Burr). In the

line picture, many lines detected are single (instead of paired), and

miss directed segments are common. In dots, the dot shapes are badly

smeared and deformed. Directional interactions in the grid picture seem

to occur at each vertex. These operators do the best in the metal

cylinders, but still not better than the other techniques.

.M
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The Yakimovsky operator, on real pictures, tends to smear small

detail as is to be expected with such a large neighborhood operator. In

lines, double lines become single lines. In the dots shot, each dot is

enlarged and flared at the corners. (Corners on a round dot? See for

yourself.) These flaring corners come from the peculiar neighborhood

shapes proposed for this operator [66]. The grid shows the same signs

as the lines picture (singles where there should be doubles). In the

metal cylinder picture, we get a good outline but are weak on internal

details and shadow completions. Yakimovsky's operator is better than

the Hueckel and Hueckel-like operators, but is less effective than the

difference-based techniques.

The Rosenfeld non-linear operator does very well for somethings and

poorly for others. On gradual vertical ramp detection, it gets nearly a

perfect score. For diagonal following, as the ramp gets further

diffused, edge position varies wildly. This occurs in part due to our

use of only two orientations. The diagonal orientation causes the

* . vertical edge peaks to be displaced from the horizontal peaks due to the

square shape of the averaging windows used in differencing. More

orientations in the detector system could help. Also narrow

(non-square) averaging rectangles would minimize the problem.

In the real picture the Rosenfeld operator does poorly because its

large operator preference causes it to lock on lighting (metal

cylinders) effects or line density (lines) effects. We have not

included textured pictures as in [52), though if we had this operator

would have performed well on them. Basically we see a common idea being

applied to two different problems, getting rather different resuLts.

The Rosenfeld strategy is to bias a multiple template detection scheme

towards the large operators, to average out textures. Our

difference-based tecnnique is biased towards the small operators which

are significant, to detect all fine structure without undue smearing.

The Burr techniques and our difference-based technique are very

similar. Burr's detector has the same shape and size as our detector

ji number 3 (Figure 2.5). We used center of mass or absolute maximum peak
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selection, while Burr uses relative maximum. This explains Burr's lower

noise immunity. Being a single, small neighborhood, Burr's detector has

problems when a edge becomes to diffused. This shows in the ramp

pictures and later in the metal cylinders picture (Note the left most

shadow in our difference-based output and Burr's. He misses edge points

critical in completing the shadow contour because they are too diffused

and weak).

Our difference-based operator does well on all the test pictures.

The position difference between vertical and horizontal edges in the

diagonal test pictures occurs because on diffused edges, large operators

are required. These operators fall off the end of the picture if the

ramp is too close the border. The cells off the picture are set to the

value of the last cell on the border of the picture. This is not a good

heuristic. Therefore, the positional inaccuracy is not due to the basic

operator itself. We should not be operating that close to the edge of

the picture with large operators.

Our adaptive threshold technique is about at the same level of

sensitivity as the Burr operator. This is because Burr subtracts cells

in multiples of threes and so does this implementation of the adaptive

operator. This operator has less noise immunity due to the additive

Laplacian (these operation are actually digitized second derivatives,

therefore high frequency and noise enhancers). On the other hand, it is

more sensitive in real pictures (note extra definition in the lower

cylinder of the metal cylinders picture).

We feel the difference-based operator, for an application requiring

the detection of both fine detail and diffused (shadow) contours, is the

overall winner. The only qualification is that the user must be able to

select an accurate noise model (set of thresholds for minimum

significance). Without this, the results go down under the noise

easily.
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2.7. Conclusions

The overall results of this study indicate that first, difference

base edge detection 1s not only the easiest to implement, most efficient

to run, but also in most cases the best, when coupled to a reasonable

edge peak selection algorithm. Second, peak selection via a "global"

method (such as center of mass or absolute maximum/minimum) is superior

to a "relative" method (relative maxima, non-maxima suppression).

Thirdly, several edge detector sizes are superior to one because small

ones can adapt to fine structure and larger ones can pick out harder to

"see" gradual intensity changes. Stable Higher-level processing is

based on solid, accurate low-level measurement (Figure 2.2S).

i.

1.
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Images (Right -Left)

After Difference-Based Edge Detection

After Supressing Disconnected Edges I
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Ed es Derived From tReg on Bound aries

Figure 2.28
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Chapter 3

Intermediate Vision - Vertex-String-Surface Graphs (V-S-S)

3.1. Introduction

We will introduce novel algorithms for region (surface)

aggregation, boundary string following, and vertex detection and

reconstruction. In our view, visual recognition can be divided into

three distinct levels. The first is basic measurement, in this system

edge detection and image sampling (Chapter 2). A system will be

fundamentally limited in discrimination power by the dimensions of

measurement chosen. We have limited ourselves to a system using black

and white or color images (we process texture in a limited way), with

all pertinent image changes characterized as steps (the position,

orientation, and transition size of each step is recorded). Image

dimensions are variable from ixlxl bit to 504x476x9 bits, however we

typically have used 252x238x5 bits (edge detection experiments in

Chapter 2) or 252x238x9 bits (following chapters).

The second phase is object-directed segmentation, or intermediate

vision. In this phase, we combine basic measurements into primitive

groupings represenming major object components. rhe object components

generated may be considered as objects in tneir own rignt, however

differ from learned objects because tneir interpretation is fixed.

Basic measurements have preprogrammed form and preprogr3mmed
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interpretation (such as intensity steps, spots, color feature vectors,

intensities). Object components have preprogrammed meanings, but

variable forms (regions - made up of an arbitrary collection of adjacent

feature and position measurements, boundary strings - made up of a

collection of adjacent intensity step points, vertices - made at the

coincidence of an arbitrary number of strings endpoints).

The third phase is object formation and recognition. This will be

dealt with later (Chapters 4 and 5). Learned objects have variable

forms and variable meanings. In practical vision systems, there are no

such things as impossible objects [25]. All objects that are formed by

data measured from the real world are possible and must be represented.

Our system for intermediate vision reads edge data, transforms this

to edge and region data (still in pixel format). These two forms of

information may be passed to texture processors or shape processors.

Texture processes transform edge information (masked by region data)

into smoothed images for further edge detection. Shape processors

superimpose edge data from multiple sources (region differentiations,

intensity edges, colored image edges, or texture image derived edges),

and extract contours and vertices in the form of the

vertex-string-surface graph structure (V-S-S). Further scene to scene

matching and recognition is done with data encoded In these V-S-S

structures alone.

3.2. Related Work

Compared to work in low-level vision, relatively little work has

been done in intermediate vision. The work of Marr on occlusion, depth

extraction, and texture is significant [31]. Motivated by -j

neurophysiological results Marr proposes measurements in the form of a

primal sketch, basically a map of edges. The measurements in the primal

sketch are then correlated together for various texture parameters,

contours, symmetries, and depth primitives. The proposed texture model

is based on histograms of edges and connections between near edges

(histograms of either directions of edges and connections or sizes of

Ii
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edges and connections). The critical idea in Marr's work is that vision

consists of forming symbolic descriptions of visual forms at every level

of representation, not simply at the level of object descriptions. In

tnis way Marr's ideas and ours about object components are very similar

even though, in form and process, they are somewhat different (wnile

again proposing a different computational attack, Waltz also shares this

affinity towards symbolic low-level vision).

Some work has been done on region growing algorithms which

incorporate some concept of figure "goodness". The Brice and Fennema

region grower merged to minimize perimeter growtn, therefore favoring

compact regions [6]. The region-based system of Tenenbaum used a priori

information to partially control region merging [60). Feldman and

Yakimovsky also have pursued region-based techniques which incorporate

semantics, via a Baysian strategy [14].

In the area of contour extraction and codification very many ideas

have been examined. Martelli uses an optimization technique, coupled

with potentially extensive search to find optimal contours [40). Very

many chain encoded contour techniques have been used. Techniques based

on Hough transforms have been used both in domains consisting

exclusively of straigi.t line segments and those having limited, but more

general segment types [46].

Corner detection in most cases, has been done by inference from

contour data [16][47]. Some work has been done on direct corner

detection [12]. We have found that any attempt to directly detect

corners in image data is relatively insensitive. In both corner

detection and contour codification, the idea of curvature arises.

Curvature information extracted from a fixed grid system is both a

function of the underlying curve and the image sampling system. This

interaction has been studied for some pixel spaces [5].

From a computational point of view, tne most common algorithms at

the intermediate level have been simple and sequential [48]. However,

some have used searches with bacKup [58). Much recent Interest nas been
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shown in relaxation algorithms [54). Primarily those with probabilistic

interactions 6ave been used. Examples of symbolic relaxation have been

employed at a higher level [63].

We will first examine region formation from edge point data. We

will then examine our method for integrating edge data from several

sources with region data for the boundary-vertex extraction process.

V-S-S graph formation will be discussed, followed by some notes on

multi-color processing and texture processing.

3.3. Regions

Artifact vision is object oriented. Objects may be viewed as

collections of surfaces which enclose volume. Each of these surfaces

project onto the 1wdge space as one or more two dimensional regions,

each having relatively homogeneous characteristics. Most commonly

observed objects have surfaces which are compact (convex-connected), or

have surfaces which are easily decomposed into compact subsurfaces.

This indicates that our algorithms for region aggregation on the image

space should, whenever possible, be biased in favor of compactness.

Biological vision systems seem to be sensitive to figure-ground

relationships. By this, we mean that regions in the two dimensional

image space can be ordered by relative embedding relationships, which

correspond to object level-background level separations. Objects are

figures with respect to the actual background. Painted surface details

are figures with respect to major object surfaces. Highlights are

bright figures with respect to surface details or object surfaces.

These embedding relationships can sometimes be thought of as links

between levels in the dendograms generated by a traditional intensity

region merging sequence (29]. In general however, these relations are

purely geometrical. For object component region generation embedding

relations should be recovered, and used in the region growing scheme if

possible.

- -. ,..,. . . .
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Strict intensity-based region growing scnemes have a tendency to

either generate large numbers of regions when severe thresholds are

used, or a smaller number of regions, where each actually corresponds to

more than one object surface, when loose thresholds are allowed (Figure

3.lb-c). In fact, places where several object surfaces tend to merge in

region-based processing, are also places where edge detection systems

fail to find high confidence edge points (Figure 3.1d).

A. B.

C. D.

A) Sample Scene;
B) Regions From Strict Threshold System;
C Regions From Loose Threshold System;

DI High Confidence Edge Points.
Figure 3.1

To remedy the problem of low confidence local data, some form of a

priori information needs to be incorporated. Sometimes scene related

information has been used, however, this restricts generality from scene

to scene. We have chosen to build our region aggregation system around

the idea of figure "goodness". That is, we make regions which tend to

jbe locally compact.

III
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3.4. Homogeneity

We have defined homogeneity in a domain or area to mean absolute

absence of high confidence edge points. In short, our region

aggregation scheme consists of assigning unique region numbers to each

connected homogeneous area. All non-homogeneous areas are then

classified by several schemes to refine the shapes of the homogeneous

regions.

The larger the local domain used for homogeneity computations, the

larger the length of a1ssing edge data that can be completed (Figure

3.2). However, the larger the operator size, the more sharp curvatures

are modified (Figure 3.3). We use digitized approximations to disks for

the basic homogeneity operations for computational ease and to minimize

boundary shape biases (Figure 3.4).

oLI
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Homogeneity Operator Passing Through A
Break In Ed ge Data

F4Igure 3.2
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Note the arrangement of Pixe.s and edge points in Figure 3.5.

Edges come in two kinds, vertical and norizontal, each between pixels.

The edge positions inside the domain boundaries are checked in the

homogeneity computations.
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Edge and Pixel Coordinates
Figure 3.5

3.5. Region Sweeping

To form regions, we sweep a homogeneity operator (one from the set

in Figure 3.4), uniformly over the image space. As edge points enter

the domain, a counter is incremented. As they leave, the same counter

is decremented. The cells in the homogeneity disk are marKed (set to a

region number) if the counter is zero (i.e. centered on an area

including no edges). If the counter is non-zero, the next homogeneity

position is evaluated. As an efficiency, the image space is divided

into 32x32 sectors. After all the cells in a sector have been marked, a

bit in the corresponding location in a 32x32 map is set, preventing

further evaluations wlthin the sector.
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The marKing operation also involves generation of region numbers

(these numbers are the marks, recorded In a "region" image, where each

pixel contains an index into the region property table). there are

three methods used for generating numbers. The easiest is used if none

of the four cells adjacent to the central cell has been assigned a

number (Figure 3.6 - We do not consider cells on the diagonal to be

adjacent because there is not a shared edge position). In thIs case,

the next sequential number (and region table entry) is assigned.

* 0I

I I

Cell Adjacency

Figure 3.6

The second easiest case occurs when only one region number occurs

in any or all of the adjacent cells. In this case, the region number

assigned is this number (thus smearing the region along). The difficult

case occurs when there are several different numbers from which to

choose. In this last case, all the regions indexed that have been

formed previously in this sweep (or pass), are "merged". The merging

consists of selecting one of tne indices as a root index (this becomes

the Index to be used for new marking), and modifying the table entries

for all the other region indices to "point" to the root entry.

Therefore all the non-root entries become "aliases" for the root number.

In this way we avoid renumbering previously marked cells.

If some of the region Indices adjacent to the central cell

represent regions formed in a sweep other than the one currently being

performed, simple merging would not always be appropriate (next

section). In these cases, an association is stored between the old

region entries (from prior sweeps) and the new one (formed this sweep).

When a single pass is finished (an operator has been evaluated over

every unmarked cell), these assoclatlons are examined.
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It should be noted that region number propagation occurs tnrough

only the directly adjacent cells, however, cell setting occurs over the

entire homogeneity disk area. This little trici makes it necessary for

any edge string breaks to be on the order of the diameter of the

homogeneity disk before the two different regions are jointed. Also It

causes the remote possibility of setting noncontiguous areas to the same

region numbers.

The sweeping operation occurs for each different operator size from

the largest to the smallest. Following each sweep pass, region table

space is reclaimed and cells are reindexed ("aliases" are compressed

out). The larger the operator allowed to aggregate a given region, the

larger the breaks in edge data that can be tolerated. Also, some

classes of subjective contours are generated because of compact area

enclosure (Figure 3.7).

( U

Subjective and Real Contour Completions
Figure 3.T
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3.6. Region Noise, Ambiguity, and Corners

There are some striking similarities between this scheme for region

aggregation and the edge detection techniques previously discussed

(Chapter 2). In the edge detection scheme, small detectors control the
process. In the region system, larger operators play the same role. In

* the edge detection scheme, small operator outputs are evaluated against

a noise model to determine their significance. Similarly, the regions

formed after a sweep operation need to be checked for significance.

This is done in two ways. The first and most obvious requires regions

to be of significant size. The size parameter we have used in our

experiments is nominally 50 cells (out of 252x238). This significance

dimension tends to become important for sweeps with smaller operators

(size 3,2, or 1).

A slightly less obvious significance parameter arises from tne

relative sizes of the homogeneity operator and the region aggregated by

this operator. If the operator is too large (diameter approximately the

same as the smallest body crossing chord), one region may be broken into

several parts (Figure 3.8). It is easier to get such things right than
to patch them up later so we have defined the following parameter:

3.6.1. W" (4# 4re perim er)/( SijeAZ)
If this ratio is greater than a threshold, the estimated region diameter

(4*area/perimeter) is significantly greater than the operator diameter

(size*2), and therefore this region is significant. This significance

test tends to eliminate undesirable large operator aggregated regions.

The threshold we use is nominally 1.0.

AL-
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i

A Region Broken By A Large Homogeneity Operator
Figure 3.3

Following each region- generation sweep, during region table space

compression, we have the opportunity to reassign region cells to

"unprocessed". If a region is computed Lo be insignificant, its cells

are so marked, and the corresponding entry in the region tables is

eliminated. 3
If sharp curvatures exist in the bounding contours of a region,

there will be areas at these corners where large operators will fail. 0

Successively smaller operators will be able to succeed in such areas.

However, the smaller operators will tend to give tncorrect results due 0

.... ....... II | m~~di..................... . '' ]. .. . '..
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to the fact that near these corners high confidence edges will be absent

(Figure 3.9). It will be generally difficult to determine where tne

small regions at corners should be incorporated. We would merge them

Into an adjacent region if such a merger was unique (i.e. the small

region 1s associated to only one other region - Figure 3.10), but when

uniqueness is not met the ambiguity 1s not easily resolved. In this

ambiguous case cells in the region are marked as ambiguous, and left to

be processed in the final refinement passes following the sweep of the

homogeneity operator.

/ 7/ ,,

Small Region Near A Zorner Wi.tn
Ambiguous Possble Merges

Figure 3.9
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92.

• \A

Small Region Near A Corner With
Only One Possible Merge

Figure 3.10

By now the reader has probably reali:ed that the post pass

fcllowing each region sweep is actually a bundle of xludges (more

p)litely, heuristics), designed to take care of some of the more

pathological problems posed by the homogeneity operations. The last

operation done in this post pass is to Kill any small group of cells set

to a particular region number, but not connected to the main mass of

that region. Recall that this defect comes about from the region

setting and propagation method. An advantage of simple convex shapes

like disks is that the problem of these noncontiguous sets is minimized.

3.7. Final Region Refinement

After sweeping with all available homogeneity operators, some cells

will either be unmarked (near some region bounding contours) or marKed

as ambiguous. We want all cells classified as part of a region, f
therefor,. we have included a series of passes wnich assign cells

adjacent to established regions to the region which tne cells are

L6
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nearest to in intensity space. This is similar to traditional merging,

Intensity-based region growing, with the exception that no new regions

are formed. Usually no more that 15 passes are required on 5 percent of

the image space (due to the sector marking scheme), or approximately 15

seconds of processing (quite fast compared to region generation). This

intensity growing algorithm is capable of recovering contours near

vertices quite well, certainly better that the original edge detectors.

The final result of the region system is a picture of region

indices and a list of regions and region properties (Figure 3.11). We

accumulate area, perimeter, centers of mass, intensity average,

intensity standard deviation, roughness, and order (operator size which

formed the region). Regions are analyzed to determine their relative

levels of embedding. We are primarily concerned with level-O embedding

which represents the main background (such as a table top or floor),

level-I embedding which represents all object details (this is all

levels between level-O and level-2), and level-2 embedding which

represents highlights and the innermost surface details (this level may

not be present, and may not be tangent to level-O regions). Figure 2.28

shows two views of a block (A), the edges detected (B), and tne

boundaries which correspond to region differences (C).
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1-~ (1 761 236.5 78.2 0.15 0.)4 198.29 133.6 384 3)

'Z Z (2 1286 176.6 15.3 0.1 0.55 211.125 51.8 234 3)

7 (3 3464 29.26 24.4 0.0 0.0 145.375 87.55 252 4)
7YI2 ZZ2

Rg (20 1456 86.2 25.2 0.00.0 60.567 57.711 414 2)

Region X & Y Edge ,Perimeter Ore
Node index / Densir

Intensity Center
Area STD Deviation of Mass

Intensity
Mean

Region Token and List Structure
Figure 3.11

3.8. Image, Edge, Region Data Merging

The construction of boundaries and vertices can be divided into

three main processes. The first is merging input edge data from several

sources: the original gray scale image, the edge detection data, the

region maps, and texture processors (after edge detection on texture

smoothed images). The second is actual boundary and vertex

codificaticn. Last is smoothing and reorganization of data into the

final vertex-string-surface (V-S-S) graph structure.

The merge process reads the image, the edge images (these have one

edge position for each pixel interface in tne original image), and the

region image to produce an edge list. Each point in the output edge

list may be accessed directly by its original position on the retinal

space by a simple array reference (each Y coordinate has an array slot

pointing to an X coordinate sorted list of endpoints) followed by a !

Ii
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binary chop (locates the edge in a selected X coordinate sorted edge

list). The region data is used as a template for edge data. Any

position in the region picture where region numbers differ, an edge is

indicated. If a real edge point exists near this position (i.e. is

marked near by orthogonally from the corresponding position in the edge

images), an edge is entered into the output lists as a region separator

edge (region image indicates two separate regions) and inherits the

properties of the real edge. If no real edge is near the region

separation, a subjective edge is entered into to output lists. In this

way, all region separator edges are recorded insuring completely bounded

regions.

Any real edge points marked, in the edge images, but not absorbed

by region separations are output as non-separator, real edges in the

output lists. These can correspond to incomplete boundaries, or

internal creases on a surface. Non-separator edges are more suspect

than separator edges as possible noise points. Subjective, separator

edges are more suspect in positional information, because the region

aggregation process simply put them where it wanted them.

The gray scale image is used to compute the intensity average

immediately on both sides of edge points. The intensity is sampled at

1/2 the transition size of the edge point on both sides of the edge.

Subjective edges are taken to have a transition size of zero.

3.9. Vertex Detection and Boundary Codification

Vertices are really discontinuities in several dimensions. They

are discontinuities in image intensity (as are edge points). They are

discontinuities in direction (i.e. sharp boundary inflections), and in

topology (separating two or more regions, two or more strings). By

string we mean "macro" edge points. That is, chains of edges which

connect end to end and have only two end points (terminating in

vertices, looping back to each other, or terminating in free space). To

find vertices we really want to find points where all the above

discontinuities coexist.
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First we attempt to attach each edge endpoint to another edge

endpoint in a reflexive manner. By this we mean, if endpoint A can only

be connected to endpoint B, and endpoint B can only e connected to

endpoint A, they can be connected. A connection neighborhood is

expanded about each edge endpoint as in Figure 3.12. Possible edge

connections are checked at each order of expansion. When reinforcing

connections as in Figure 3.13, are found, reflexive linking occurs.

Edge endpoint3 involved in more complicated connection geometries are

flagged as possible entries into vertices. A new vertex number is

assigned for each of these areas of connection ambiguity. In effect,

these possible vertices are detected where topological discontinuity is

locally indicated.

~I _mI

I IIIU _ _III i 'J

I I_ I _ I I I I I I I I

I.I -I __I __ I -I

Connection Neighborhoods, By Order
Figure 3.12
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L .... ......

I
I~efa

Reinforcing and Nonreinforcing Connections
Figure 3.13

After all reflexive linkages are made, strings may be assigned by

finding edges marked as entering vertices at one end and reflexi'ielv

linked chains on the other end. The reflexive links are followed to

find the successive edges to be bound i.n the string. Circularly linked

chains will still be left. These are broken by artifi.cial vertices and

processed in the same manner as non-circular chains.

Some vertex clusters will be simple groups of edge Points, with no

string connections, or 0-degree vertices. Some will be 1-degree, with

only one string connection. these types have no topological

significance and can be di.scarded. 2-degree vertices can be either

L
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noise generated or real. Some that are real will not be detected by the

simple topological discontinuity criterion. For this reason, 2-degree

vertices are also discarded, to be regenerated at points of high

curvature later. The appropriate string concatenations are then

performed. The vertices that remain are 3-degree and higher, and

relatively certain, but their positions are not accurately known.

3.10. Vertex Reconstruction and String Smoothing

Reconstruction and smootning is a two pass operation. We first

compute accurate positions for 1-dearae and higher vertices. We then

smooth and detect 2-degree vertices at points of maximum curvature. The

reconstruction and smoothing is then performed again using all vertices.

Vertex reconstruction consists of computing the perpendicular

least-squares line fit* for each string entering the vertex.

L X (X Edge Po~int:

K Number of
-WII = Edge Points

7) - ( 7 i.

4-1.
A./ 7T S=f-syrt W/T--r C = A7.S 

for line: A 1.
Two linearly independent equations are all that are required to U

position a vertex. When more are available (3-degree vertex or more),

the system is solved for the best intersection point in a least-squares 

sense.

--------------------------------------------
* These equations (3.9.1) and several others are courtesy of Rod

Fletcher. I'
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3.9.2. CA., - ,

n equations n weights

Solve: L;~ i~ ' ] [J i~ e

When vertex positions are fixed, a least squares line is fitted at
each point in the strings (Figure 3.14). The A and B coeFFicients are

used to compute a tangent angle. These angles are used to compute

change in angle with respect to arc length, or curvature along the
strings. Two degree vertices are recovered by examining these

curvatures. As in linear difference edge detection, an edge (in this

case a 2-degree vertex) is located at points where the difference
~(curvature) is greater than a threshold T and maximum over a speciFied

domain (Figure 3.15). All the tricks used for edge detection are

applicable in this situation when scaled down to a single dimension
! (along the string). In practice, we may use a single sized diFference

operator with a single threshold and get acceptable results.

I.
1*
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Vertex ROCOntru-tion
Fisure 3.14 1

Curvatures DetectedU

Significance Levels

Tangent Angle Change Peak
Detection Of Significant Curvature Discontinuities

ligure 3.15
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After the 2-degree vertices ire marked, we perform the the same

reconstruction algorithm on them, followed again by the linear equation

fitting about each string point. Tbis time however, each string point

is repositioned along the perpendicular to the least squares line onto

that line, thus smoothed (Figure 3.16).

Edges Along A String Moved During Smoothing
Figure 3.16

Sometimes, incorrect highly subjective edge strings cause false

vertices to form, perturbing the positions of nearby real vertices (due

to our perhaps too powerful smoothing and vertex repositioning machinery

- Figure 3.17). This is corrected by a post pass which examines all

edge strings that are highly subjective (ones formed solely by our

region aggregation system, without adequate edge data corroboration).

When required, these highly subjective strings are deleted, and the

vertex ositions in the vicinity are recomputed. The region data base

remains unchanged by these deletions, therefore some regions may only be

partially surrounded by contour data. The Missing sections correspond

to areas where connection is assumed, but where the exact nature of that

connection is in question.
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Subjective

ii

Vertex

Affected

Subjective Contour Forming A False Vertex
Figure 3.17

At this point we now have a data base containing all vertices

linked to the strings which form them, along with all entry angles. We

have the strings as property lists containing the average transition !
sizes of their edges, the average intensities to the left and right of

their edges, the variations in intensity to the left and right of their

edges, the variations in the differences across their edges, the regions

separated by their edges, and Indices to ordered lists of edge positions

and tangents, to describe the string shapes. Lastly, we have a region

list, containing the properties computed by the region aggregation

sub-system.

A, *4411
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From this point forward, all processing is removed from the

original picture space. All successive operations are performed on the

vertex-string-surface graph structure. Figures 3.18-3.24 show the

Images, images after edge detection, edges after vertex marking (X's

mark edges entering possible vertices), vertex initial and reconstructed

positions, distance moved by edges during smoothing, the V-S-S

structure, and the V-3-S structure after a post pass (using Ramer's

method to chop curved segments).

Images
Figure 3.18



70 L

* -. . °

.z- i., " .

Edges For Figure 3.18
Figure 3.19

11I

Vertex Marked Edges
Figure 3.20

Vertex Initial (Dots) and Reconstructed (X) -
Positions

Figure 3.21
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Distance Edges Are Moved During Smoothing
Figure 3.22

V-S-S Graph Derived Plot
Figure 3.23

V-S-S Graph After Curved Segment Chopping
Figure 3.24
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3.11. Notes on Additional Feature Dimensions

In Most of the examples discussed gray scale intensity data has

been processed. We, for the Most part, restrict ourselves to this

variety of data because it is the simplest to obtain. However, the

processing we have so far described is not limited to simple intensity.

Tne Most obvious form of multispectral data is color. We obtain

color information by taking three pictures through red, green, and blue

color filters. Many workers have proposed the combination of these

spectra into hie and saturation. We choose not to do so because our

approach is to extract critical discontinuities (edges) and organize

them (form regions, contours, and vertices, each with property vectors).

This can be done in the R-G-B space as well as in the hue-saturation

one. In the R-G-B space, noise models are easier because they are

exactly the same as for intensity alone (directly a result of

digitization and sensor- noise). If R-G-B is transformed to

hue-saturation, noise functions are transformed and since this is a

non-linear transformation, the noise transformation is non-linear. For

this reason we choose, in general, to work with data in the form

directly generated by sensors.

Any discontinuities, in any of the feature dimensions represents a

significant point. Therefore, these discontinuities can be extracted

independently and superimposed. In the set of all discontinuities, each

individual one inherits properties from each feature dimension in which

it occurs (i.e. the tacit assumption here is that if discontinuities

co-occur in different feature spaces, bu. at nearly the same spatial

position, they are all generated by the same underlying process). In L
this way, any system can not only be easily expanded to process color

(i.e. light sampled in three frequency bands), but a wide variety of

alternate feature domains also. Figures 3.25-3.26 show two color

pictures, and the corresponding red, green, blue, and composite edge

pictures.

S.i
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Blue Blue Edges
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Green Green Edges

Figure 3.25. Color Edge Processing, Local Image
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3.12. Notes on Spot and Edge Textures

This system of region, vertex and string encoding does not directly

process texture information. However, all regions which can not be

processed as smooth are marked by the region processor as rough. These

regions may be passed directly (roughness being a region feature vector

component), or may be transformed to "smooth" by some texture smootning

process. We believe that "texture" is actually high-density shape

information. Snape information with higher density than -an be directly

handled by the main line shape processes.

When a region has been too "busy" for the region process to handle,

we use one of several primitive shape smoothers to form images which

contain null areas for already smooth regions, smooth, non-null areas

for regions having texture types compatible with the shape smoother, and

"busy" areas for regions for which the shape smoother is in applicable.

These smoothed images may then be passed bacK through the edge

detection system, for edges between the smoothed areas, and these edges

precipitated into the global edge images (busy edges in smoothed regions

are masked away). After all the known shape smoothing algorithms have

been passed over rough regions, any still rough areas can be can be set

to smooth and called "none-of-the-above" rough regions (Figure 3.27).
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Figure 3.27
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In this way, we are characterizing texture as Microscopic snaps

information, in high enough density configurations to be characterized

by statistical models rather than by specific graphical models. This

approach allows much more integration between shape processing and

texture processing. 9ach of our smoother processes may be thought of as

a matcher for a given edge and edge connection histogra2 (Figure 3.23),

as described by Harr. Hart proposed that such histogram

characterizations of textures could 0e sufficient to mimic human texture

discrimination.
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Example Texture Histograms
Figure 3.28
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We claim that texture-like phenomenon can occur at any level of

shape representation, and therefore cannot be considered by one simple

formalism (like spatial spectral analysis). Also, texture processing

can best be understood as high density shape detail, too dense to

process explicitly. Therefore, texture can best be studied in the

context of shape extraction and representation.

3.13. Conclusions

We have described a system which operates on single images to form

complete vertex-string-surface graphs. Surfaces are aggregated prior to

contour processing by using the idea of homogeneity as the basis for

region segregation. This method allows edge closure and the generation

of some classes of subjective contours.

The contour-vertex processing described finds vertices before

contours, by examining local edge connect conditions (reflexive

connections). This method allows contours to be labeled without path

following (we use a pure scan line algorithm). Vertex reconstruction

and contour smoothing is performed via a tangent line based technique.

It is shown that detection of curvature discontinuities along contours

is analogous to tts detection of edges in image spaces.

Textured areas are segregated from sooth areas for optional

additional processing. Nhis consists of a variety of texture smoothing

processes. Each of these, for a given class of textures, will produce

smoothed images from rough ones. The various smoothed images may be

edge detected and the results superimposed over previously detected

smooth region boundaries. In the same way color images can be

processed. The different color spectra are individually examined for

edges with all detected edges being marged upon completion.

r
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Chapter 4

Half Chunks, Depth, and Motion Correlation 1.

L
4.1. Introduction

Detection of scene change has been performed via bulk correlation

techniques which nominally reduce to picture subtraction or convolution,

followed by segmentation and characterization of difference areas. In

these approaches "difference" is examined very closely to the feature

level (i.e. difference in intensities, or intensity statistics). Jain,

Militzer, and Nagel £27] have used a method which compares local

statistics to determine areas in scenes where change has occurred.

Potter 6 49] has used image differences for object segMentation. Gennery

and Burr have looked at bulk depth correlations, Gennery in outdoor

scene contexts and Burr for machine parts. In this approach patches of

one image are bulk correlated along a path of probable parralax in the

matching Image (a convolution operation). Marr does depth computation

by matching symbolic entities from left image to right Image, minimizing Li
depth discontinuities 135]. We have approached the problem of change

correlations in even a more symbolic manner. We look for similarities

in the structure of abstract forms produced from stereoscopic motion

picture sequences. This is similar to some of the modeling work of f
Baker, Bauagart, and Burr, except we do not restrict the variety of

motion allowed for objects.

I
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We acquire our structural information in the form of V-S-S graphs,

one graph per input image. These graphs are re-encoded as half chunk

graphs and compared for depth and motion cues. Tne first variety of

graph is similar to that used by Underwood (62], however we encode more

complete topological and geometrical information. The second kind of

graph is entirely new. The graphs of several different images are

matched, binding atoms and links of common types together. In a similar

system, Dudani forms matches in vertex directed way (11]. Our matching

scheme tends to be guided by points of high curvature or significant

topological properties, but only because these have high discrimination

value (tend to form unique matches).

This approach is desirable for several reasons. First, by matching

on half chunk features, computational effort can be reduced by selecting

pairs of atoms (or links) for association, consistent with uniquely

matched "seed" atoms (links). Such a selection procedure assumes that

some structural features (such as descriptive contour curvatures,

vertices, or types of intensity variations), are so descriptive that

they can only be matched to one corresponding feature from another

graph, and that this matchiog is correct. This condition can be

guaranteed by deferring image matching to a level at which each

"component" to be matched is a significant part of a whole object.

Tne second advantage we get from matching half chunks is that the

various atom and link bindings wnich we obtain are easily interpreted in

terms of rigid body transforms of object parts and eventually whole

objects. Each aggregation of bindings around a given unique seed match

gives rise to transforms from one subgraph to another directly.

Finally, our techniques are equally applicable to depth, motion,

and image registration correlations. Depth correlations primarily

lifter from motion ones by the allowable transform taking one graph (the

right one) to the other (the left one). Since the dopth and 2otion

transforms are easier than the registration ones, we have included them

in our matching procedures.
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4.2. Graph Re-encoding (V-S-S to H-C)

In generating the single image graphs we found it useful to
segregate the various components by their geometrical types (i.e.

vertices, strings and regions). We found this convenient because each

of the different types naturally surfaced from our data during different

processing steps (small strings or edges first, regions next, long

strings and tentative vertices after regions, and finally true

vertices). .

For the purposes of graph matching, we desired a uniform encoding IL.
for our graphs, in which all the information encoded into the V-S-S

graphs could be used, but in more normalized form (Figure 4.1). To this

end we have invented the "half chunk" (H-C) graph. Each "half chunk"

represents a fragment or one half of a bounding contour for a region (or

a length along a string). Geometrically it represents a single change

in boundary curvature (or in the case of a vertex, a tangent angle

discontinuity) at a point in space (3-space or 2-space), and a tangent

line at that point. ropologically, it encodes five connection types,

one across-region link (the R-Unk), two endpoint extension links (the

S-links), and two across-boundary links (the X-links, Figure 4.2). rhe

half chunk also carries a property list composed of features computed

from the region and string feature vector lists.

I
II
11
I]
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Each half chunk could carry a completely arbitrary floating point

feature vector recording things like region Zolor, intensity statistics,

and contour diffusion (degree of blurring). However, for complex scenes

this would be more than we require. We want to make and record

decisions about the various feature dimensions, rather than record

actual feature vectors. An array of decision features are computed from

feature components encoded in V-S-S atoms. The noise statistics for

these decision features are approximated, as modified normal

distributions, and are used to trisect the feature spaces (Figure 4.3).

True (t) records a strong detection or a feature, "maybe" (?) a weak

detection of the feature, and false (f) a sure non-detection. This

three state decision property is recorded rather than an actual feature

vector component.

PI

I I

'P.,
I I
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Two Sided Distributions One Sided Distributions

One-sided and Two-sided Decision Models
Figure 4.3

Each H-C decision feature is related to some question we would like

answered concerning tne intrinsic properties E31 of the image generating

our graph struatures. We suMMarize each decision feature as follows:
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Feature 0-3; Intensity Cnops

Intensity is scaled so that the ninimum intensity is 0 and the

maximum intensity is 1 (so as to be light level independent).

Feature 0 is the region lightness minus the 0.5 level (for the

region linked via the half chunk R-link). Is the region lighter

than average or darker than average? Feature 2-3 are successive

intensity chops (divides the half range, the quarter range, and the

eighth range).

Feature 4; Boundary Diffusion

Nominal Diffusion is 3 (3 pixels) due to the imaging system.

Is a specific boundary more diffused (i.e. likely to be a shadow)?

Feature 5; Lightest/Darkest

If the intensity is lower than 0.5, then this feature is the

region intensity minus the darkest region intensity. If the

intensity is higher than 0.5, then it is the lightest region

intensity minus the region intensity. Regions which are nominally

the lightest in a scene could be direct reflections of the light

source (or a highlight). Darkest regions could be unlit (or deep

shadows).

Feature 6; Intensity Step Size

This is the difference of intensities across a boundary. Is

the boundary a light -) dark boundary or a dark -> light boundary?

Feature 7; Difference Of Boundary
Intensity to Region Center Intensity

This is obtained by subtracting the intensity along a boundary

from the average region Intensity. Surfaces which roll away from

the observer get darker towards the boundary (less reflected light).

Flat surfaces, with abrupt junctions to other surfaces have rcu3hly

constant lightness.
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Feature 8; Variation Of Feature 5 Along A Boundary

This is the standard deviation of Feature 6 along the boundary.

This detects a uniform lightness ratio across a surface-surface

junction. This can occur when a surface is painted on another.

Feature 9; Intensity Variation Along A Boundary

This is the standard deviation from the mean intensity along

the boundary. This feature becomes large along rolling surface

boundaries.

Feature 10; Variation in Region Intensity

This feature is the standard deviation of average region

lightness. If non-zero it implies the region is rolling and lit by

a light source.

Feature 11; Average Roughness

This feature is the average edgedness for a region.

Feature 12; Boundary Real/Subjective Index

Tnis feature is the ratio of real edges per edge for a bounding

contour. It is a function of how broken the bounding contour w1s

prior to region aggregation.

Feature 13; Depth Variation
"*After Depth Correlation Only**

Planes are locally fitted to all correlated npif chunks after a

depth binding operation. Any H-C with an anomalous depth relative

to its average plane is marked as having a depth variation.

Highlights can appear as either under or over the average surface

level. Occluded junctions may also display anomalous depths.

o ... . .== )
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Feature 14; Motion Variation
**After Motion Correlation Only**

Planes are locally fitted to motion correlated half chunks.

H-C's with anomalous velocities are marked. Shadows, nighlights,

and occluded boundaries can show this affect.

Feature 15; Region Embedding Level

Tnis is not a decision feature like the rest. No statistical

decision is involved. The (t) value represents the largest ground

region. The (f) value represents the innermost level of embedding

(highlights tend to be at this level). And the (?) value marks all

intermediate region embedding levels.

Using the half chunk we can encode regions, strings, and vertices

in easy to traverse graph structures, which allow relatively easy graph

matching (Figure 4.4). The modification or removal of relationships

during a matching sequence (such as the disassociation of two adjacent

regions), can be easily accomplished by simply breaking links.

Insertion of new surfaces uncovered in the process of successive viewing

can be easily incorporated by "ripping" boundaries in half and Ilnking

in the half chunks bounding the new uncovered surfaces (Figure 4.5).
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Figure 4. 5

Certain types of "interesting" structures become apparent in the

H-C grapns. Vertices turn out to be circuits along X-links. Regions

are formed by circuits along E-links (or by H-C's snaring the same

R-link). A generalized "interesting" thing is something which makes

chains and particularly closed chains.

4.3. Graph atching (Depth and Motion Correlation)

Finding matches between non-identical graphs is in general a

difficult problem, certainly much more difficult than finding simple

isomorphiss. If we do not expect to find many actual isomorphic

Match3es, then a natural way of ordering all possible non-isomorphic
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matchings is via the idea of cost (55]. We can invent some basic

atom-atom and link-link cost functions, and can define an overall match

cost as some function of the individual component (atom or link) costs

for all the bindings between the matched graphs. If we have good

component cost criteria, then good graph matches will also have low

cost. We, therefore, need to search the possible graph binding space

(this space consists of all possible atom-atom, and link-link bindings

between two input graphs), for minimum cost component binding

configurations.

If we choose a metric (such as Euclidean distance) as the basic

element-element cost function, we may need to evaluate large numbers of

bindings to find the optimal whole graph binding. This computational Ii
expense can be significantly reduced by typing the individual atoms and

links and allowing comparisons only between equivalent types. We can,

in many cases, do this typing without any real loss In power. We would

not generally compare surfaces with vertices, atoms of any type with

links, or contours considered very diffused with ones razor sharp.

This brings us to our particular match scheme. Three critical

ideas have been useful in patterning our algorithm. First, we constrain

any final matching of graphs to those in which only one-to-one atom

(link) and one-to-none atom (link) matches occur. Second, we match

primarily by "covering", and only secondarily by atom (link) to atom

(link) metrical cost. And finally, matching processes are seeded at all

highly descriptive unique matching points, and allowed to compete with

each other in a parallel fashion for the remaining unbound atoms and

links. In good situations, most of the individual matching processes

eventually grow into contact with their neighbors, find compatibility

between the neighbors and themselves, and merge with the neighbors. In

this way large areas of a graph structure are matched in parallel.
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Generally, we are require six costs in a graph matching scheme:

A is an atom from graph Ga
8 is an atom from graph Gb
La is a link from Ga
Lb is a link from Gb

4.3.1. A) Cost for matching A and B
S4 .1.26 gA5 Cosat for matching A to null

4.3A: u B) Cost for matching B to null
4h.La Lb) Cost for matciing La to Lb
4 .. 1La~ Cost for matcing La to null
4. vi.b i Cost for atching Lb to null

For the cost of an entire match, we select a cost (1-6) for each atom in

4a (for all A) and Gb (for all B). We sum the selected Costs. We wish

to find the matches where the cost is minimal.

4.3.7. C z f(A;,B;) + Zg(A) + u(B3 )

* Eh(Lai ,Lbi ) + Ek(La,) + Tv(Lb;)

In the most general atom matching directed scheme, we will

necessarily have to check every atom A (in graph Ga) a&ainst every atom

B (in graph Gb). And in the case where the costs, particularly the atom

atch associated costs (1-3), vary as function of things already

matched, even more comparisons may be required. The link associated

costs (4-6) will be designed to grow primarily as a function of

mismatches which are a function of badly matched atoms, rather than

mismatches due to atoms matched to null. This complicates the general

scheme by predicating the link match cost on the atom matches. Finally,

if we have atoms of different types and links, it is not immediately

obvious how we should weight the components of graph matching cost

associated with each.

We get around most of these problems by formulating a simple

"covering"-based costing scheme. If we type atoms, we need never

compare atoms of different type. They always are known to yield

infinite cost. We may use the array of three state properties in the

half chunk in the same manner as a type if we broaden the idea of "being

of equal types", to the idea of "being potentially of equal types".

That is, atom A covers atom B if A could be 8 and B could be A. In our
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three state scheme this ,nd of check IS easy. Tne t (true) property |

covers ? (maybe) and t, the r (false) property covers ? and f, and the

? property covers all (Figure 4.6). It may seem that simple three

state feature properties would be very weak, and indeed individually

they are. However, the three values are sufficLent to swer, any

Boolean question posed concerning a given grouping of feature vectors,

and ir many such questions are asKed, a powerful discriminator can be

formed from the answers.

Example:

Covering Rules: t t t f f f
t 9 t= t ? ? t f ? ?

f O f f t t t f f ' covers

fet ?

a b b a t f f f

? 
? ta fft?

t t ? f ? f does noc cover

Coering Rules
Figure 4.

For two half chunk atoms to be possible matches, they must "cover"

each other, be geometrically similar (i.e. close enough in tangent,

curvature, and size), and must be Involved in encodLng the same

topological relations (i.e. must have compatible link structure and be

either all vertex derived or contour derived). The matching algorithm K

uses one graph as a template for the other. About each H-C in the

template a neighborhood (circular for motion matching, along the

direction or parallax ror depth matching) is expanded and all H-C's from

the other graph falling in the neighborhood are examined for covering,

topological consistency and metrical cost. Any H-C's with unique (or

no) matches are marked (bound to tne unique match, or marked as matching

null). Each unique match acts as a seed around which a local El
interpretation may grow (if no unique matches are generated the matchLng

with the lowest metrical cost is chosen as a seed, but this has actually
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never occurred except while processing some test datasets - Figure 4.7).

6- A/Ill !

b / /

E6.APM 64APH

Neighborhood Ex ansion, Seed Formation
Figure 4.

After binding up all unique matches, some previously ambiguous

matches (H-C's matching more than one in the other graph), will now be

unambiguous. This happens because of link consistency. If atom A

matches uniquely atom B, A connects through an endpoint link to C, B

connects through an endpoint link to D, and C ambiguously matches D, £,

F, and G, then after binding A and B, clearly we should bind C and D

(Figure 4.8). We can therefore imagine unique bindings causing new

unique bindings through any links. By a relaxation scheme, these

influences are propagated until the various seed centers grow to

collision.
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Figure 4.9

4hen two seed centers collide, if they represent mutually

consistent bindings (i.e. they both cause the template atoms at the

collision area to be bound to the same atoms in the other graph) seed

growth stops, and the matching is locally finished. If the seeds

disagree about particular bindings, the interpretations with the lowest

metrical cost are adopted. Thus, one seed 2aY steal atoms and links

from another, and may ultimately obliterate the other. Because of our

covering-based method for seed selection, we generally get good seeds

evenly spread over the image graphs. Therefore very little competition

actually occurs between seeds, and rarely is a seed totally absorbed by

its neighbors.

Just as the neighborhoods expanded for motion matching differ from

those expanded for depth matching, the metrical cost functions differ

(Figure 4.9). For depth we allow small movement in the parallax for no

cost, but require close fit in tangent, curvature and non-parallax

variation. For motion we allow small movements in X or Y, but constrain

tangent (though not as much as in the depth case), and curvature.
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For both cases, once a binding transform For one H-C is computed

(From a unique binding), this transform is used for computing Cost for

connected H-C's. It is assumed that objects are relatively rigid.

4.4. Interpreting Bindings (Transforms and Graph Merger)

After a completed matching sequence we have the two original graphs

(i.e. their atoms and links), and a set of atomic bindings (which imply

link bindings - if A binds to B, A is linked to C, C binds to D, and B

is linked to D, then the link from A to C is bound to the link from B to

D - Figure 4.10). We must now use this binding information to fuse the

two graphs, forming new graph elements associated with 3-space

coordinates vectors (in the case of depth matching), or velocity vectors

(in the case of motion matching).

L.
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L
Lin~k Matching Implied By Atom Matches L

The actual computation of a depth or a velocity for single half

chunks, or clouds of half chunks in connected subgraphs is really quite

straightforward matrix algebra (on potentially overspecirted systems). H
We have chosen to simplify our depth computations by assuming that the

objects we see are relatively far from the camera system, minimizing !

perspective distortions. If this is true, Z (depth) becomes negatively

proportional to parallax.

p (por"d/4x) -o i,,s'

, It

The main advantages of this approach to computing X, Y, Z are

simplicity, and the inherent isolation of parallax errors to only the Z

component. X and Y measurements are relatively accurate (good to one

pixel position), and P (parallax) measurements are good for computing

relative depth. However, in translating X, Y, P into absolute X, Y, Z

significant errors due to P can occur. It is better to isolate these II

' ; ,. ; -- [
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purely in the Z coordinate.

For motion transform computation we assume small overall motions.

Therefore we ignore any overall scale changes. We compute three

different motion transforms, one assuming simple translation, one

assuMing translation and a rotation in the plane of the image only, and

- one assuming translation and a general rotation in 3-space. We select

the most complicated transform which is not singular (or near singular).

X'= +T" J . ,'-j~ T"

7)%.R ted')

6€ !
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As has been shown, computation of transforms of various kinds is

easy following the graph match. What is actually much harder is to

produce an new graph (3-dimensional, or with moving half chunks) which

is consistent and preserves as much of the associations of the original

input graphs as possible. Producing this merged graph is a heuristic

process, however some guiding principles are apparent.

If the basic signal data encoded in our graphs is good (i.e.

accurately reflects object structure), we expect nearly perfect matching

between individual scene graphs, where the underlying object structure

is common. In fact, we get this criterion as long as we correct for one

problem. We need to allow for boundary expansion or contraction due to

slight changes in object viewing perspective. We deal with the problem

by allowing small, unbound half chunks surrounded by larger, bound half

chunks to be absorbed into their bound neighbors (Figure 4.11).

IT

Boundary Contraction
Figure 4.11

The basic strategy for graph merging is based on believing

atom-atom bindings, and breaking in-graph links until each graph may be

unambiguously overlayed over the other. This basically means that atoms

in one graph may have links (in one of the five possible terminals)

where atoms in the other do not, or corresponding atoms may both be

missing corresponding links, but if both have links they must be

compatible. That is, if endpoint A links to B, and endpoint C links to

D, and A binds across graphs to C, then B must bind to D. If this is
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not true then one or ooth of the in-graph links (A to B, or C to D) must

be broken (Figure 4.12). The link which is broken is the one which can

be explained most easily as an ar ifact of newly ucovered data, seen in

one image (an therefore its graph), but not seen in tne other (Figure

4.13).

Legal and Illegal Bindings
Figure 4.12
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Links Broken Because of Inconsistency
Figure 4.13

Figure 4.14 shows three images processed up to the basic V-S-S

graph form (A. right t=O Image, left t=O image, right t=1 image; B.

Edges; C. Image constructed from the region assignment data; D.

Tracing constructed from the basic V-S-S graphs). Figure 4.15 shows the

basic V-S-S form broken in an object segment directed way (by segment

curvatures - Ramer's method), converted to half chunks and correlated

for depth and motion (bindings are marked in yellow). Figure 4.16 shows

the V-S-S form broken into smaller pieces, conver~od to half chunks, and

correlated. Figure 4.17 shows the same re-ults (in less detail) for an

interesting metal cutout (the 3-d model is rotated in three dimensions

for display). Figures 4.18 and 4.19 show other scenes processed for

object models (only one view and one time interval is displayed -

objects found will be displayed in the next chapLer).

I
I
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Right, t=0O Left, t=0 Right, t=l

After Edge Detection

After Region Aggregation

Generated From V-S-S Graphs

Processing Prior to Matching for Depth

and Motion
Figure 4.14
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Right V-S-S, t=O Left V-S-S, t=0 Right V-S-S, t-l

Depth Bindings (yellow)

Motion Bindings (yellow)

Depth and Motion Bindings For Object Directed
Segments[ Figure 4.15
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Right V-S-S, t=O Left V-S-S, t-O Right V-S-S, t--l

Depth Bindings (yellow)

Motion Bindings (yellow)

Depth and Motion Bindings For Small Segmets
Figure 4.16
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Depth Bindings and Model BuildingI Figure 4.17
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4.5. Conclusions

We described a method for correlating visual information at the

level of object structure, via a graph-based formalism. rhis method is

very good for wide angle depth correlations, motion correlations and

correlations where the transformation taking one graph to another is

ill-defined. This method is powerful when used in conjunction with

graphs made up of individually powerful (in terms or discrimination

power) atomic pieces of object structure. We have introduced such an

atomic unit of structure for the world of man-made artifacts (or objects

primarily recognized by their shape), in the half chunk. We should note

that the idea of the half chunk does not depend on graph matching, nor

graph matching on the half chunk (we could have graph matched on the

V-S-S graphs, but with more complexity due to the different atomic

types, vertices-strings-surfaces).

Two major problems which arise when employing our graph oriented

approach, are the problem of getting good graphs, and the problem of
designing good atom-atom correlates. The latter problem we have

addressed by characterizing atom (H-C) properties as three state Ii

decisions properties and using a "covering" based comparison scheme.

The former problem is unsolved, and requires significant technical K
effort. Our results in the area are promising enough to make us think

obtaining good graphs is possible. LI

II
I

tI
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*. Chapter 5

Object Identification

5.1. Introduction

Object models have traditionally been represented as either

semantic net like graphs (65](62][59], or as object centered, rigid

body, surface descriptions. The semantic net approach is deficient

because dimensional information needed for exact object reconstruction

is not incorporated. The surface description form has been used for 3-d

hidden line/surface graphics, and some recognition work. Baumgart's

system was primarily a graphics based system, which was applied to

object representation. Baker tracked contour information, but still

produced solid models which represent surface samples. Perkins stores

2-d models but also uses an object centered representation. Burr

represented objects as object centered 3-d segments. Object centered

models are good for display, however, are deficient for recognition

because each new viewing angle generates models which are parametrized

I in different spaces. ro match models, first, correspondences must

heuristically be established, and at least one model reparametrized (so

jboth are in a common coordinate system). This extra processing obscures

the matching process. It has been our conclusion that object

representation and subsequent recognition does not match either of the

two previously described modeling techniques well.
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Several works have suggested modeling techniques which instantiate

some critical object feature relations. The generalized cylinder

approach is like this. Many objects can be captured by specifying

relations along major axes [4]37]. The trouble is that every object

variety does not have these major symmetry axes.

Let us first list the requirements of a model representation scheme

and a method for employing such a scheme for recognition:

1) The modeling method should potentially be able to capture object

structure exactly.

2) The modeling method should be able to capture partial object

descriptions (in the sense of missing views).

3) The method should allow for representation of objects at varying

levels of exactness.

4) Models should De built by the system automatically. It should be

possible to enhance a model with new information to form a more

exact model.

5) Models of varying exactness and completeness should be

comparable. I
6) Modeling should take into account redundancy of structural

components in real objects to form more compact [1
representations.

7) It should be possible to recognize two very different objects as

different with less Computational effort than to recognize two

similar objects as different.

8) Hatching should not require exact matches.

9) The primitive elements and relations used to encode objects

should explicitly encode elements and relations required in the

recognition process.

VIO"
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10) Models should be comparable without reparametrization.

Ue semantic modeling approach satisfies (2) because complete

semantic graphs need not be encoded, (5) and (9) because presumably

ideal models would all contain critical relations and structure, and

(10) because critical relations and structure will not change from one

parametrization to another. The solid model approach satisfies (1)

because complete dimensional information is stored, (2) because

incomplete Information is possible, (3) because all data can be stored

in an averaged form (a "defocused", lower dimensional form), (5) only if

an averaging process exists which can match models of differing size or

dimension (i.e. (5) is not satisfied passively - a computational

process is required), (9) if simple dimensional information is require

only (i.e. (9) is not satisfied if we want complex topological

relationships to be represented). Briefly, neither pure object centered

solid representation nor semantic representation has all the features we

desire for an object modeling scheme, although the solid modeling

approach seems to be better. The generalized cylinder approach is

better than either except that not all objects are amenable to it (i.e.

for some objects like blocks major axis encoding does not instantiate

important relationships).

We encode objects in a novel scheme based on the "half chunk"

graphs produced by our depth-motion-labeling process (see Appendix D for

a brief description of the labeling pass following depth-motion

correlation). Recall that the basic half chunk (H-C) is a small section

of object boundary curvature, which carries an array of properties

describing the nature of the surface-surface interface locally.

Dimensionally, a change in tangent angle and two lengths (lengths of the

legs) are carried. In the original 2-d half chunk encoding, each H-C

also carries a tangent and the coordinates at the center and end of both

legs. These parameters are removed (tangent angle) or store in a

separated structure (coordinates of the last known position for each H-C

[ is stored in the XYZ atoms - these each index to a H-C atom, but are not

used in our recognition algorithm - the XYZ atoms are Xept as data for

I



112

low level feature trackers).

For simple objects (Figure 5.1), the object H-C graph does not

contain enough information to reconstruct a dimensional model of an

object, however, when the object complexity increases just a bit (Figure

5.2 and 5.3), complete information in the form of constraint relations

does exist. By constraint relations we mean that each d-C carries both

dimensional constraints (delta angle and lengths), and relational

constraints (X-link, E-link, and R-link bindings). On any reasonable

3-d object these constraints when taken in large enough subgroup sizes,

completely describe the solid nature of an object. We call this form of

representation "feature" centered as opposed to "object" center, the

form commonly used for solid object representation. rhis form of

modeling allows both 2-d (Figure 5.2), 3-d (Figure 5.3), and zixed

dimensioned objects to be represented. Also, because any surface or

boundary can be represented by a concatenation of half chunks, to any

degree of precision, the requirement of exact representation can be f
achieved.

4
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A 2-D Half Cnunk Graph With A Single Reconstruction
Figure 5.2
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Our method of encoding multiple objects Uses a dictionary of

universal half chunks which are referenced via tokens in all object H-C

graphs. An object model consists of a sequence of disconnected 2-d

and/or 3-d H-C graphs. An arbitrary number of individual objects are

allowed in an object library. Library objects are compared to input

objects (formed by the depth-motion-labeling correlator system) by

producing and comparing series of subgraph histograms, beginning with

histograms of basic H-C frequency. We find the histogram method allows

partial object matching, matching of models composed at differing

precisions, and rapid removal of unlikely objects from the matching set

of objects. We believe that objects could actually by modeled by a

series of subgraph histograms rather than by the original H-C graphs,

thereby reducing recognition from a series traversal of graphs, to one

of a series comparison of histograms. In this way, recognition of one

object out of a library of many objects can be made to be significantly

more computationally tractable.

5.2. A Common Basis for Object Graphs - Histograms

If we wish to compare graphs we can either compute some graph

descriptor function (such as the number of atoms) for each of several

graphs and compare the descriptor values, or we can traverse the graphs

in some way, comparing graph elements serially, accumulating a match

coefficient or cost (as done in depth and motion matching). If we take

the traversal approach, we can either traverse the graphs in a breadth

first or a depth first oriented way. Assume that we have a library of j

object graphs each averaging m elemental atoms in size. If we wish to

compare a new object encoded as a graph of n atoms to the library of

objects, using the breadth or depth oriented search approach we require

on the order of J'm'n compare operations. To use the descriptor

approach we need only jmm+n operations or approximately 1/n times the

traversal approaches. If the descriptors extracted from the object

graphs are invariant we only require J+n operations (1/(m'n) times if j

dominates, likely for large object libraries - 1/(j*m) times if n

dominates, likely for small libraries of complex objects). Because we

I
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have been interested in methods which could be used with very large data

bases we have been attracted to comparison by descriptor methods.

Particularly we want descriptors that are either invariant or easily

updated when new information appears (i.e. that do not require

evaluation of all the information pertaining to a given object for each

acquisition of new data).

The type of graph descriptor chosen is based on critical subgraph

histograms. Because one descriptor may not be powerful enough to

separate all pairs of graphs, our method is based on comparison of

families of descriptors, each accounting for higher order subgraphs. We

first match each primitive half chunk in new object graphs to the half

chunk component library. This library contains copies of all half

chunks used in any graph currently encoded in the object data base. Any

half chunks not having a 2atch in the component library are entered.

All half chunks are thus replaced by H-C tokens. The first order

histogram of an object graph has one slot for each H-C in the components

library. Each slot is incremented for an occurrence of the

corresponding H-C token in the object graph.

To compute the second order histogram of an object graph we must

generate all subgraphs with two atoms (or H-C's), centered at each atom. L
We make a sorted list of the subgraphs (to achieve an invariant

ordering), collapse all identical entries into one, and use this as a

component library. We may then compute a histogram using the

uncollapsed list of binary subgrapns and the new second order components

list. This operation may be performed repetitively for higher order

subgraphs, however, each level is computationally more expensive. For

arbitrary graphs computation bscomes expensive quickly, however, because

the H-C graph primitive has limits on link fan-out, it exibits more well

behaved growth. We still do not find it practical to expand extensively

beyond second or third order histograms. This corresponds to matching

on the frequency of curvatures, pairs of curvatures, and trihedral

vertices. Beyond the order three there is reason to believe that a

traversal base technique might perform better computationally.
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5.3. Histogram Comparison

Comparing object graphs has been reduced to comparing lists of

histograms. To compare lists of nistograms we need to address the

problem of comparing single histograms, one from a new object graph and

the other from a library of object histograms (or extracted from a

library of object graphs). The simplest comparison method would be to

accumulate a least-squares like difference cost between the two

histogra2s (Figure 5.4 - eL.,+Cc). ir this cost exceeds a limiting

cost, the histograms are different, otherwise they are the same,

perturbed by measurement noise. This method is undesirable because any

new packet or views of an object is likely to be incomplete (unless we

explicitly intended the packet as a learning set and therefore included

sufficient information to build an adequate model).

We generally see only a few sides or discriminating features of an

object during a recognition set, this-being enough to separate a given

object from our space of all objects. Except during initial object

learning, we expect new object pacKets to be s of an object

already encoded into our library. Therefore, matching error is only

accumulated on histogram differences where new object features are not

"covered" by old object library entries (Figure 5.4 -C,).

I
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do will evaluate all three histogram matching costs COP, CV , and

Cc, even though the first alone is used to determine object matching.

The other costs can be used heuristically in reducing search when

- libraries of objects get quite large. As long as e., is smaller than a

preset limiting value, any mismatch is assumed to be due to information

present in the new object histogram, not currently reflected in the

library generated histograms. This new information is added to the

library, refining the old object information, therefore allowing the

system to "learn" about objects. On the other hand if the mismatch cost

is greater than the limit, a new object entry must be formed.

This points to a very important phenomenon of "learning by

similarity" systems. If the system is allowed to learn too fast (i.e.

the mismatch cost limit is too high), all new data sets will be

incorporated into one of a very few object models. If the system is

constrained to learn very slowly (i.e. mismatching errors must be very

small for equivalence), new data sets tend to form entirely new object

models easily. We want practical systems to operate between these two

extremes. Imagine each object packet generating a point in an object

library space. For practical systems, we require a metric in this space

which gives a low value between points associated with the same object,

and significantly larger values between points associated with different

objects. As a corollary, we expect better performance the larger the

average distance between different object centers. Therefore, even if

we have a good metric, we need to start the system with "good" (i.e.

far separated) seed object examples..

5.4. Strategies for Constraining Search

In principle, we can form a series of histograms from any object

graph, then compare this series with similarly generated series from

, other graphs to establish matching. Tnis can be done between any input

object graph and any graph in an object library. For large object data

bases this is ridiculous because of computational constraints. We have

programmed into our system several different ways for artificially

constraining the object search (constraining the search without

I
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guaranteeing optimality). We may operate in now object mode, object

verification mode, and constant computational effort mode. For all

operating modes first order histograms fur all objects in the library

are precomputed and stored. Each new input object graph is processed

individually and the library file updated accordingly.

For new object mode, the first order histogram for the input graph

is computed. Tnis histogram is compared against all the precomputed

first order histograms. If it is dissimilar from all the others, a new

object entry (and associated histogram) is formed. thus an new object

is "learned". If only one histogram from the library is similar, a

match is declared and the new object graph is concatenated to the graph

data stored for the matched object (matched histogram is updated

accordingly). If several histograms are similar, each is expanded to

the second order, along with the one from the input object graph. Tne

matching of the second order histograms proceeds as did the first.

Expansion of higher order histograms continues until either a unique

match is found or all potential matches are discarded (a new object

entry is composed). This strategy allows new objects to be entered and

old objects to be recognized. Computational load is roughly

proportional to kn where n is the number of objects in the library and

k is related to average object complexity. Most of the work is done

with the first order histograms, thus eliminating large portions of the

search space after one level.

For object verification mode, we disallow any new object entries.

Again the first order histogram for the object to be recognized is

computed and compared to all first order histograms in the library. if

we allow matching of no objects (i.e. this object is allowed to match

none), the matching proceeds as in the new object mode case, except that

no new objects are entered into the library when all matches fail. If

we insist on a match, and we get to a level of comparisons (first order

or higher) where no possible matches occur, we select the lowest cost

match (using COV as the index of cost) as a correct match. This

basically forces the selection of an object. This matching mode will
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have better performance in error prone environments, at the expense of

disallowing new object model building. Computationally, this 2ethod of

operation is equivalent to the new object mode.

In the constant computational effort mode matching, we constraint

object space searching artificially by examining matching costs (using

e., andl£!w). The heuristic used does not guarantee optimality, but

generally yields good results for large object libraries. We expand the

first order histogram for the input object graph, and compare to the

precomputed histograms. We eliminate all histograms not considered

similar. We treat the single and null match as previously. However, in

the case of the multiple match we disallow all but the a best matches (m

is a specified constant, and best to worst is ranked using the en cost

- similarity is still based on thresholding the e ost). If after

selection, multiple matches still abound, we descend to second order

histogram based comparisons. If these yield multiple matches, we

examine the third order matches. The parameter M is roughly equivalent

to the depth of our most intensive search in histogram orders. In this

way we can artificially limit computation during object matching.

Intuitively, it seems reasonable that recognition can be accomplished

for most machine parts gith limiting search to three histogram orders -

curvatures, paired curvatures, and trihedral vertices.

Figures 5.5 and 5.6 show the objects recognized and entered in our

test object libraries generated by runs on the data set shown in figures

4.14-4.19. Note that while some data will be missing for specific

* instances of an object, the data that is present has an invariant

relationship to model data (with some measurement error).

I
I
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5.5. Using Histograms as the Models

In the current implementation of the object modeling system, we

have a basic half chunk component library ordered by intrinsic half

chunk value (sorted on all H-C properties, inducing an invariant order).

Each H-C is given a token value at the time of entry into the component

library. All H-C graphs for objects are re-encoded using this token

value in lieu of actual half chunks. Prior to object recognition, the

first order histograms for each object model are computed from these H-C

graphs, stored in the object library. As required, higher order

histograms are computed during object matching sequences. Because we

have found that generally only limited levels of histogram orders really

need to be traversed for most sets of objects, it seems quite reasonable

to eliminate actual graph storage in the future.

Modeling objects as histograms, or as parameters wnich characterize

(such as / and 6' ) histograms is quite appealing, because it allows

us to unify shape and texture recognition techniques. We have pointed

out elsevtnere (Chapter 3) that texture is best modeled as an overdose of

shape information. Using histograms of edge and edge connector

densities and directions Marr has described many elemental textures.

Using our nistogral techniques we can describe object forms. While

histogram segmentation across whole images many be questionable, most

elemental difference-based edge detection schemes can be posed as local

histogram characterization and matching.

The shape histograms herein described may easily be incrementally

formed (i.e. updated to reflect new information), if we fully expand

the components library to all possible H-C primitives. This set of low

level primitives then becomes our basic object alphabet. Individual

objects become statistical "words" composed of these letters without

order (first order histograms), with binary ordering constraints (second

order), etc. We really never need to encode graphs to encode object

structure.

~~.y .
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5.6. Conclusion

We have described a modeling system which is "feature" centered

rather than "object" centered. This method has the good features of

semantic net models and dimensional models combined. ie have discussed

several model matching methods which allow for automatic model building

and model verification.

The method we propose is based on objects modeled as 2-d and 3-d

half chunk graphs. These graphs are relational networks of elemental

curvature samples. The basic model is free of scale, coordinate system,

or rotation dependencies (however, XYZ atom information may be

incorporated to bind the half chunks to a specific three dimensional

space). This allows model comparisons without any reparametrization.

To speed the recognition process, allow for matches on partial

data, and organize search, we have describe a histogram-based object

graph matching scheme. rh1s method may be extrapolated to actual object

modeling by histograms.

I

I.
I
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Cnapter 6

Contributions And Future Work

I.

6.1. Contributions

This work first and foremost is an attempt at constructing a

complete visual understanding system: from initial measurement and

segmentation to object learning and recognition.

We have contributed two new edge detection schemes (Chapter 2), a

new region-based edge reinforcement process (Chapter 3), and 3 new

algorithm for boundary and vertex codification (Chapter 3).

The most significant contribution is the half chunk, half chunk

graph, and the histogram-based graph comparison method (for object

library .aintainance). rhe H-C graph is significant because it points

the towards "feature" centered object models instead of "object"

centered models (Chapter 4). The histogram-based modeling system is

significant (Chapter 5) because it point towards a method of processing

visual data that could unify object recognition, texture discrimination,

edge detection, and region aggregation (all as histogram 3
characterization processes).

A szootning method (Appendix B), a method for threshold detection

(Appendix C), and a feature based labeling scheme (Appendix D), have

also been developed.

~7-
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Figures 6.1 and 6.2 show a block diagram of our systeM operating in
non-textured black and white environments and in colored-textured

environments.

I
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6.2 Future lork

The greatest speed and performance improvements will come from work

on the first few processing steps, ie. edge measurements and

region-based processing. These both now work with 60003 pixels per

image and this resolution will grow. We now require approximately 23

minutes per frame for these steps and only 5 minutes per frame for all

our graph-based manipulations (this is even more significant if you

consider that the 20 minute phases are hand coded to execute as fast as

possible, whereas the 5 minute phases are implemented quite

inefficiently). By the time we have reduce our processing to edges, we

have nominally 2000 points. After V-S-S formation hundreds of things

remain. By the time of object identification we very rarely have more

than 10 individual structures left to process.

Reliability is still limited ost by how well initial significant

differences can be measured. Cameras need better dynamic range, spatial

resolution, and distortion characteristics (spatial and intensity

ranges).

We see no good reason why edge information cannot be directly

encoded into half chunk form without the intermediate stage of the V-S-S

graph. We also see no reason why more relaxation-based processing could

not be incorporated into a single program, allowing richer interaction

between the high and low levels of the system (particularly, with

respect to depth, evidence indicates that humans can use depth

information at a lower level for segmentation aids prior to object

formation).

We feel that distributed computing architectures would greatly

improve the real time performance especially at the low end where help

is critical. There should never be any reason for a general purpose

serial machine to evaluate a function over every pixel site.

We feel this effort towards a bottom-up based system is a mixed

success. We have extensively tested our methods for edge and region

detection and formation. rnese are quite successful. Our texture
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processing has been done for only a few examples and runs too slowly for

extensive testing. It currently Knows about edge densities with and

without directions. The graph matching methods for depth and motion

works well for objects having some sharp cuevature discontinuities but

not so well for things with very regular structure, like spheres. For

these, a "half chunk"-liKe structure for expressing centers of object

symmetry are a possible solution. We would propose a system which uses

both boundary generated half chunks and symmetry axis generated half

chunks. Also things with no regular dimensional structure, like trees,

cannot be modeled. rnis problem would probably best be solved by

incorporating a half chunk based system within a more global semantic

net based system (possibly coupled to a natural language system). It

has been difficult to process enough data for more than about eight

objects, so the modeling system has not been extensively tested. ie,

therefore, can only speculate on performance with very large object data

bases.

V
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1.

Appendix A

Edge Detectors I

A.1. Hueckel Edge Detector

This edge detector is a direct implementation in BLISS-10 of the

algorithm in £23] Appendix A, with fixes indicated in £24]. The

operator is designed to work on a digitized disk of radius 4.5 (diameter

of 9 cells). It allows detection of steps, dark stripes, and/or light

stripes. In these experiments, we have restricted the algorithm to

steps. .

The operator attempts to explain all activity in a disk in terms of

the superposition of a set of orthogonal functions. The intensity J
function is expressed as a series expansion in terms of the orthonormal

set. A least squares criterion between the actual intensity function

and the orthonormal expansion is used to compute, approximately, the
coefficients for each term. From this the edge type, position, and

direction is computed. For complete details the reader is referred to

the literature.

A.2. Psuedo-Hueckel Detector

Tnis operator is based in the same sort of mathematics as is the P
original Hueckel operator. rne intensity variation in a square

neighborhood of 9x9 is expressed as a superposition of orthonormal 1.
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functions. In [43], it is shown that for detecting the direction (a)

of any step in a window the functions of Figure A.1 are sufficient.

ll~llll a'~Tillsli,

Orthonormal Set For Direction Computation

Figure A.1

Our simple refinement to the procedure in [43], to allow detection

in non-binary pictures, consists of computing the minimum and the

maximum in the window, while computing the components of the gradient.

We then select a threshold of T=(MAX-MIN)/2+MIN. [43] suggests that

with such a threshold T, we can compute the edge line (i.e. the edge

position), given the direction (kc) and the number of cells greater

than, or Less than the threshold. While this is true, we found that it

was actually easier to implement the position computation by fitting the

least squares line,

A.2.2. 7X

or

using the Points where the intensity flips from one side of the

•" threshold to the other side of the thresnold.
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Tnis modified operator is significantly faster than Hueckel's and

seems equally sensitive. Each pixel in the square area is accessed two

times. Once to compute MIN, MAX, and gradient components. Then a

second time to acquire threshold crossover points, therefore complete

the edge line information.

A.3. Linear Difference Detector

This operator was used by [7) in his edge detection apparatus, and

was for us a Jumping off point in our edge detection experiments. Our

difference-based system is really an array of linear difference

detectors with a better peak selection algorithm.

A six cell strip (vertical or horizontal) is used to compute a

difference (three positive, three negative). This difference is

compared to its nearest neighbors (Burr used the neighbors on both

sides, we use several neighbors on each side). If it is a relative

minimum or maximum, an edge is marked in its position. Burr went one

step further. He examined the difference in the orthogonal direction to

compute in angle for the edge (as in the psuedo-Hue-ckel operator). We

simply mark vertical or horizontal edges.

A.4. Rosenfeld Non-Linear Edge Detector

This is a direct implementation of the edge detection method

described in (52] and [53]. £nis system computes an array of averaged

pictures, four in all for our implementation. rhe block sizes used in

the averaging operations are 2x2, 4x4, 8x8, and 16x16. Rosenfeld also

suggested lxI and 32x32, however we found these to be unnecessary (lxI

is smaller than the quickest step transition possible from our vidicon

system, 32x32 is larger than required to average any noise pattern in

our tests).

Then differences are formed in the vertical and norizontal

directions (Rosenfeld suggests diagonals, but for computational

efficiency sake, we use only two directions). At each averaged size, we

used maxima suppression to remove (set to zero) all points that are not

. . . . .. . . . ..
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maxima or minima within one averaged block area. Additionally, the

differences not suppressed must be greater than a confidence T.

We now examine the differences with respect to those in other

averaged sizes. 4e select the difference for which then next smaller

size does not give a significantly higher absolute difference. If Ei)

is a difference for the averaged size i x i and E(i/2) is the maximum

difference for the next level smaller (the maximuM non-suppressed

difference in the area covered by the i x i sized neighborhood at the

(i/2) x (i/2) sized level), then "significantly higher" means:

A.4.1. EMi < aEUiI2) <,(a*')~/2m)
..< (a mn) U/(20 n))

but, 9(i/(2**n)) > aE(i/(26*(n+l)))

where, a_3/4

An edge is marked in the position of this selected difference. rhe

(2*"n) term will never exceed 8 (nz3), in our implementation. At n=3,

the selection process automatically selects the difference (i.e.

(i/(2"*(n+1))) is never evaluated when n=3).

For further details we refer the reader to 152] and 153].

A.5. akimovsky Edge Detector

We have adopted the edge strength function proposed by (66], but

not the region growing algorithm. This is done because we wish to

examine edge detection techniques, not region-based processing.

(Althougn, the region-based techniques may be interesting in comparison

to those described in Chapter 3. rhere are similarities between our

method of expanding edge neighborhoods for string and vertex detection

and the growing rules used by Yakimovsxy. By not being constrained to

be one pass, our system is capable of doing better in some cases.)

We have simply coupled Ya~iMovsky's edge strength function to a

non-maxima suppressing edge detection scheme. rne strength function is

given in Chapter 2, for reference to the more standard expressions for

variance and 2ean comparisons.
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Me suppression algorithm used is like the one previously described

for the linear difference detector. 40 scan the operator nelghboroods

(four suISested in [66] - see figure A.2) horizontally and vertically,

aarKing edges at each Point where the output is saxiMu within one

operator neighbornood area. The only complication is that we select our

result fro& the operator naving the largest strength, and suppress the

others within the same area. Yakimovsxy seems to be suggesting tnat

several differently shaped neighborhoods might allow objst shapes to be

followed more effectively, considering that his technique requires a

relatively large number of samples (to compute the variance accurately

enough). In tact, from a purely statistical point of view it can be

argued that even larger neighborhood sizes might be desirable.

F" I I l !I I l!I -- 1  ||

Yakimovscy's Edge Detection NeIghborhoods
For Horizontal Edges

Figure A.2

I
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Appendix B

Image Smoothing and Enhancement

B.I. Image Averaging

The baosic images taKen from the C.S.L. silicon vidicon imaging

system are 252x238 six bit pixels each, plus or minus one level. For

low contrast images, only 64 levels is not adequate (especially when

performing gradient related operations). We have remedied this proolem

by averaging eight 252x233x6 bit images to form a 252x238x9 bit one.

When the vidicon signal is near a quantization level, small noise

variations can cause plus or minus one level digitization errors (the

analog signal in our system can be modeled by the sum of the "ideal"

signal + N{O.O,'0.5} - see Figure B.1). If we sum several images

together, we can effectively get new levels "between" the old ones in

single images, thus a finer quantization of the vidicon signal. rhis

only works because there is additive noise in the vidicon image signal.
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(9-BiT)

Vidicon Signals, Quantizations, and Averages
Figure 8. 1

8.2. Image Smoothing

We can further improve image quality by smoothing. This generally

consists of replacing every pixel by the average of all the pixels in a

given neighborhood. While this does improve "noise" variations (by

replacing a random variable with M and '" by a new random variable with

and ), it also blurs genuine signal variations.

To get around this problem, we designed a non-linear smoother based

on the maximum likelihood decision between: I--. -)'

r ',', - G., ,,~

Est imated Noise -...
Dist ribut ion

. .

i is set to:
xyi(#, o) i,.,, 4 O(-I, o) i,., 7, # l,,),, .,. Lu,-/)g,4, * ,

Where:
£4b , . - . L' r¢.-'- x"J.t

__ e°
" X1
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rhis decision is evaluated about each pixel for each of its

adjacent neighbors, iteratively for several whole picture cycles. de

have experimented witn several methods for cutting off the iteration

process. rhe first, and simplest, is to iterate a fixed numoer of

times. For our typical images we have found 5 iterations to be

adequate. Second, we have allowed iterations to continue until the

overall 6 of the image fails to become smaller, indicating signal

degradation. This method, for typical images, runs between 3 and 6

cycles before stopping. The last method used stops cycling when 6 ,
for g(t)-g(t-1), fails to decrease. This method is like the second one,

except that it is less sensitive (in terms of number of iterations) to

random changes in image content (i.e. various genuine signal related

differences). Figures B.2-8.5 shoW slices of a six bit image, a nine

bit image, and a nine bit image after smoothing has been performed (5

and 10 cycles).

g(t-1) = image at iteration t-l

g(t) = image at iteration t
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A Six Bit Image Slice
Figure B. 2
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A Nine Bit Image Slice
Figure B.3
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A Nine Bit Image Slice After 10 Cycle Smoothing

Figure B.3

I
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Appendix C

Selection of Thresholds in a Segmentation Process

I

Segmentation processes generally consist of clustering many

measurements from similar objects together, or conversely separating a

few highly dissimilar measurements from a large sea of similar ones. If ]
we have a model for expected measurement error, we can form a function

which relates any particular measurement value to the probability that

that measurement represents a noise variation or a signal based

variation. We then can select an acceptable threshold for separating

"discontinuous" phenomenon from "continuous" phenomenon. (In

discretized spaces each measurement may be considered discontinuous from

the next. However, if a piecewise continuous function was sampled to

form the discrete function, this definition of continuity is not useful. VN

We wisn a definition of discontinuity such that points at

discontinuities in the underlying continuous space function also

represent discontinuous oints in the sampled function.)

First we need to define a difference variable. For edge

detection/region growing this is simply the intensity difference

computed from adjacent averaged intensity neignoorhoods (the most

primitive being single pixels). Possibly, different neighborhood

orientations (such as vertical vs. horizontal differences) should be

considered drawn from different populations (therefore handled as



1419

separate sets of data). For significant angle difference detection

(corner detection), angle differences can be used. For depth

correlation errors, depth differencos from adjacent connect (in one or

the otner stereo image pairs) depth associated neighborhoods define a

difference variable. A good difference variable is a zero mean random

variable, for all measurements taken from a similar set of data.

If we assume many more similar readings (i.e. many more difference

si3tes which are associated with no edge, than difference sites which are

locations of edges), than dissimilar readings we may estimate the noise

distribution functions using an one of several standard techniques (by

assuming all the readings represent noise variation - the number of

noise readings must be )> than the number of signal readings). For

simple discrete cases we can use either a binomial model (good because

there may be a position in the distribution where no noise will be

detected as signal) or a normal model (good because it can be

characterized easily by two parameters the mean 14 and the variance

6 ). For more complex distribution types we may use a 4onte Carlo

method.

Armed with a typical noise distribution we may select a threshold
which labels a particular measurement as a noise point with a known

error probability p (Figure C.1). We need not threshold negative

differences at the same significance level as positive ones, but we

generally would expect to do so. This method for threshold selection is

related to several goodness-of-fit methods commonly described in the

literature (30].



153

f CI far "

T r'_'

Monte Carlo

Estimate - 0/

7~f~9

* ; . . 3 Gaussian

0 I ff armn.: %

Estimates of the Distribution of
Single Adjacent Pixel Differences
(An ExamPle Difference Variable)

Figure C.1
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Appendix D

Region and Vertex Label Sets

D.1. Labeling Algorithm

As a final object segmentation -technique, we resort, to a

"Waltz-like" labeling scheme for assigning types to regions and nalf

chunks. We are not interested in the intimate descriptions of line type

*that Waltz himself obtained, but rather want to separate the half chunks

into three major types. These are lighting derived, true object

derived, and occlusion derived. rhe first and the third types are

grouped and marked so as to be ignored during the object recognition

phase of processing. The meaning of lighting derived types is

self-evident (we mean highlight or shadow related half chunks, when the

half chunk does not also coincide with an object related boundary).

Occlusion derived types (UNLINKED- types) are generated at what Waltz

called "occluded" or "occluding" boundaries (Figure D.1). Regions or

surfaces are labeled as shadow, highlight, ground, or object. Ground

represents the largest background region (or group of regions).

Generally this is the tabletop, or backdrop.
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Figure D.1. Some Examples of Waltz Labolings and

H-C Labelings
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We begin our labeling algorithm on a H-C graph having each H-C

assigned every possible label type. Iteratively we apply vertex-based

constraints, then surface based constraints. All half chunks connect in

X-link rings are processed jointly as vertices. All half chunks connect

via R-links (alternatively, via E-link rings) are processed jointly as

surfaces.

Each vertex label type applicable to a leg of a H-C is an "on" bit

in the H-C type field for that leg (initially-all are on). We scan

through our vertex list for all matching vertices (same geometrical

class, degree, and having compatible labelings), and accumulate the

logical OR of these labelings (equivalent to cons'ing a list of all

possible vertex matches). Possible labelings are ANDed with the initial

H-C labelings. In the first iteration, this operation eliminates

labelings incompatible with certain boundary feature properties.

Each E-link (connection along the boundary) is examined for

adjacent H-C type compatibility. This causes the labelings on either

side of the linkage to be the logical AND of the labelings prior to this

processing. rnis operation is equivalent to computing the intersection

of the the two label sets.

After the vertex-based processing (processing equivalent to ialtz's

"filtering" algorithm), surface-based constraints are applied. Each
surface aggregation is labeled as shadow, highlight, ground, or object,

by matching indicator label types on all the H-C's encoding the surface.

rhen the labels which are incompatible with the region type are removed

from each H-C.

TMnese operations continue until a specified number of iterations

are concluded, or until steady state is reached (generally the later).

rnis labeling scheme is unique for three reasons. First, it is based on

half chunks which are themselves unique. Second, it incorporates region

con3Lraints as well as boundary constraints. Finally, initial labelins

are assigned and constrained by directly measured feature properties in

addition to semantic types (the region and boundary labelings). In some
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sense the vertex geometrical type could be considered s one 'If these

measured feature properties (convex, concave, straight).

D.2. Nomenclature

Boundary Segment (H-C Legs) Mnemonics:

LK Linked
UP Unlinked+
US Unlinked-
HP Pure Highlight+
HX Pure Highlight-
SP Pure Snadow+
SA Pure Shadow-
JR Unlinked-, Ground
US Unlinked-: Shadow+
UH Unlinked+, Highlight+
H Unlinked-, Hignlight+

MS Unlinked+., Shadow+
LS LinKed, Shadow+
LH Linked, Highlight+

Feature Property Mlnemonics:

DIFF Boundary Difrusion
LGrA Absolute Lightness
LGrR Relative Li ghtness
TAN3 tanfency Di rerence
RAt Ratio Variance
VARY Side Variance
REFL Reflective Variance
TEX Roughness
REAL Rea&/Subjective Index
DEEP Dep h Variance
MOVE Aotion Variance
44BD Region Embeddedness Index

Feature Property State Suffix:.,

# Set to FALSE (no variation, not diffused,
lightest, light>drK, most embedded)

& Set to MAYBE (not determinable, [
object level embeddedness)

$ Set not-applicable-property V
<none> Set TRUE (variation, diffused, not lilhtest,

dark>light, ground level embedding)

Half Cnunk Angle Properties: I1
C Concaved (0 de.)
V Convex (< 180 deg.)
Z Zero, Straight ?1 183 deg.)
SV, or

Region Label Format:

Indicator Labsl Concatenation
Compstibility Labei Concatenation ) (comments]

ii : i'; l m~~l i i l l i . . . ..... flil lt ... .. .0
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Vertex Label Format:

((H-C List 0 )(H-C List 1 )*.(H-C List n) [ comments]

H-C List For-mat:

( H-C Angl.e Property, (Leg List 0) (Leg List1)

Leg List Format:

Feature Proerty Concatenation
Boundary Segment labels Concatenation)

**Concatenation3 are anemoniC3 and 3uffiXes separated by '+1 (OR)
or 1-0 (NOr(AND) - legal in label concatenations only)

D.3. Example Label Definition File

(INITIAL REGIONS - 2-JAN-79]

(LK4JP LK.UP+UL4+SM4+H,) £ OBJSCr)
GGRR [GROUD)
(HPZUH+LH,LHHP+UH+MH) [PURE HIGHUIGHII
SP.+4S+LS,HS.US+SP+LS) [PURE SHDOW]

cINIrIAL VEuICm - 2-JAN-79]

(2-DEG]

( (? (DEEPI+MOVE#.DIFF#+EMBD# LK) (DEEP#F.MOVE#.DIFF#+EM~BD# LK))
?, (D9EP#+MOVE#+DIFF#+E.BDL ) ,( D2EP#+MOVu+DIFF#+EM11b#,LK)))

( (C, (DEEP#D*MOVE#+DIFF#.IEIBD.LGrR#,LK) ,(DSEP#M0VD..DIFF+EiiBDO4
LGrR#,LK))

(V1 CDEEPD+ MOVE#+DIFF#D.EBD#+LGA#+LGrR,LH) ,(DEEP#+MOVVED+DIFF#+EAIBD#+
LGtA#+LGTR,LII)) )

( (Z, (DSEP#+,40VE#+DIFF#+EMBD#+LGrR#,LK) ,(DEEP#+MO0VE#i.DIFFO.EABD#+
LGrtR#, LK))

(Z, (DEEP#+M43VE#+DIFF#4.eLIBDt4-LGrA#+LGtrR, LH) ,(DF.FP#+MOVF.#DIFF#+EM4BD#+
Ll~irA#+L"JtR,LH)))

0 ( (DEEP#+MOVE#+DIFF#+Ei4BD# LS) (DEP#+40VEO.DIFF+EAIBDD LS))
?, (DEEP#I+MOVED,.DIFF#+EMB6#,LK) ,(DEEP#.MOVL#.DIFF#+EMBbI,LK)) )

0 ?CDEEP#+40VE#+DIFFD.EM4BD# USL )i DEEPO+MOVE#.DIFF+E4BD# LS)jU, (DSEP#+MOVEhDIFF#+EMBD~ ,(DSEP#+MOVE#+DIFF#+EA4B6#,LS)) )
((Z, (DEEPD+MOV+DIFF#.EMBDI+LI~tA#+LGrR,LH) ,(DEEP#.MOVSD+DIFF#.E4BD#+

LGYA#+LtR LH))

LGtrR#,LS)) )

( (V, (DEEP#+MOVE#.DIFF#+EMBD#+LGrA#.LGrR, LH) ,(DEEP#.MOVE#hDIFF#Et'BD#.
LGFrA#+LGrR ,LH))

(C, (DEEP#+MOV#+DIFF#.EMBDLGR#,LS) ,(DEEP#..4OVE#+DIFFI.+Ei43D#.
LGtrR#,L$)) )

( (? (DBEPD+MVU+DIFF#I.EMBD#,UP) ,(DEEPD.MOVE#+DIFF#+E:4BD#,UP))
(W~~EMBD, GR) (EMBD GR D~)
,( BDGR)(9BDG)) ) D~DMVDDFDEBDM)

((Z, (DEEP#+MO0VE#+DIFF#+E*1BD#+LGrA#+LGtR,UH) ,(DEEP#s.MOVE#.DIFF#+EABD#+
LarA#+LGrR, Uif)EB+~r#G)

(Z,(E,48D.LGrR#,GR) (MDLtIG)
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( (V, (DEEP DMOVD,#DIFF#.EMBD+LGTA#LGTR, UH) (DEP +OVE+IFF.ABDf+
LGYA#hLGTR, UH))

(C,(EMBD+LGrR#,GR),(EX4BD+LGTR#,GR)))

( 0' (DEEP#+MOVED#+DIFF#...4BD#,UP) ,(DEEP#+M4OVE#+DIFF#.&ABD#,UP))
??,(DIFFD+F~4D,U4),CDIFF#.E,,IBD#,UL4)) )

( (?(DE *MV DIFEAD+.r#,P, (D--rP #+.OVVE +DIFFDADD

(?,(DIFF#+.MBDD+LGTrA#+LjrR,Mki) ,(DIFF#+ iBD# 3rTA#+L.IrR,Mdi)))

( 0? (DEEP#+MOV&D4.DIFF#+S&4SDD S) (D7-EP#.AOVP.#+DIFF+Et4BD#,,I4S))
U?,(DIFF#..&4BDD,U3),(DtFFi4.&46D#,US)))

0 C? #+OF.+IF#&MD UP) (DEEP#+MOV-m+DI'FFD+EMBD#,iJP))

((?,(DEEP#D 'OVe#+DIFF#.,&4BD#4.GTR#,,4S) ,(D2:EP#.MOV&D+DIFF#+SABD#+
LGrR#,ms))

(?,CDIFFD+EM4BDD+L^VrA#+LGTR,Mi) ,(DIFFD+L.?ID+LGrA#+LGTR,MLH)))

(Z (zDEP O44VE#+DIFF #+E4B D#+LGTA #+La ra, u ) ,(DEEP#+LAOVE #+DI FF .&iB D#+
LGrA#4.GrR ,UH))

((V, (DEEP #+KOVE #+DIFF#+EABD#+LGrA#+LGrR, uH) , (DZEP#DOV+DIFF+EABD#+
L~3rAIILGrR, UH))

(C, (DIFFD4.EMuBD+GrR#,Ut) , (DIFF#I.EABD#+LG4TR#,UM)))

( (Z,(D.EP#MOVE.D+DIFF+EMBD.L.GTA#,UH), (DEEP#+MOVED..DIFF#+Eu4BD#+
LGrA#,Lm))

(Z,(DIFFD..EMBDD+UGTA#,MH),(DIFhEMBD+LGrA#,MH)))

( CV, CD-EP#+MOVE#+DIFF#+EiMBD#+LGA#,UH) ,(DEEP#+ 43VE#+DIFF#bEi1BD#+
LG rAD, UK))

(CCDIFF#+EMBD+LGrA,MH),DFF#+E4BD+L3rA,M)))

( (z,(DF.P#+4V#+DIFF+E,,BD+GrA+L~rR,UH) ,(DEEP#hMVE#.DIFF.81DU+
LGrA#+L3r U4))

(Z,CDIFF#+E?1IBDi+LGTR#,US),(DIFF#+Ei4BD#+LGrRD,us)))

( (V, CDEEP#hMO0IE#+DIFF#D &4BD#+LUrA#+LGrR ,uH) ,(DEEP#4VE..DIFF#+.MBD#.
LGrA#+LGrR, UH))

(C,(DIFF#+EMiBD#+LGrR#,US),(DIFF+EiBD.LGTR#,Ui)))

C(? 0 ABD Git) (EMSD GR))

( (Z( DIFF+LGrA+LGrR.E,4BD# H) (DIFF+LGTA#+LGTR+EM BD#,HP))
tZ,(DIFFLGrR#,Hm),(DIFP+LfR#,HM)) )

( CV( DIFF+LGIA#.UGrR+9EMBD#,HP~ WFF+LGrA+LGR+ 4.BO#,HP))

C (0 (DIFF+LGTAL'3TR#+DEP+Ei4BD#, SP)A(DIFF+LGTA4.GrR#+DEEPO+E4BD#,SP))
C?,(DIFF+LAIIR+DZEP#*EMBD#,S4),(D rF+LGRDEP#E4BDD,S)) )

C ( FLT+,jR+EP+EBO3)(IFLjr+L'T#DE#EB#S)
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E3-D G I
[?-JUNCTION4S]

Y -JUNCTIOIS]

(V ( DE PD.NOVE#DIFF#+EM4BDD LIC (D;EP#+MOVF .DIFF#.E4BDD K)
V?(D9EP#,MOVF.#+DIFF#+EKbD L ),DP.-#O4VE+DIFFDi.Et.1bD LK))
CVv(DEEPD.M0VF~f+DIFF#.EK4Di , DE-:'P#D4iVE#.DIFF#I.&4BD#,LK))

C(V (DEEP#eMOVF.D+DIFF#e.EX8DD,UP) ,(DEP+MOVED+DIFF#.EMBDD,UP))U, (EcBDGfl) . EBD,Gf))
CVA(MBDGR) R~MBD,GR) )

((V (EMBD GR),(Et4BD,Git))

R (V (EMB BD GRS))(IFLr+GR+DE#EB#S

C(V (EMBD GR) (EMBD GR))
R V (DEEPDO 4V#DIFF#+EMBD#,UP ),( D3± PhMOVEI+DIFFD+EI3D#,LK)))

V CDEEP#+,'4OVE#+DIFF #.Et4BD#DLK DEE D~P#MV.40mDIFF #.E4BD#FUP))

(W-JUNCT.LONS]

( IC(DFFU.&4BDD .UlM) DFF#DeEMBD# US)DV,(P+4OV.#,D1F+Ei4BD#,UP lDcEP#+MOVF.#.DI FF#+.AB4D#,Lifl))
?IEP )0'#DFF+ 4D ,( :D~iP+4OVE#.DIFF#eE,4BDDUP)).

( (C (EL4BD.GiR), (EMBD Ga))

(, :RE#MV#bIF+MD: (D--EP+M-3ViE#DIFF#+EM4BD9,K)
(V (DEEP#D,43VE#DIFF#EBD# LK)(DEP+O4VE+DIFFO.EBD#,UP)) )

E r-JUNCTIONS]

N , DE6PbMO4V9#.6IFF+E4BD#P M (DEEP# MOVE#+DIFE'D.CBDD, LK ))
, DEEP#+,40VE#+DIFF#+Er4BD#,LK) (DSEP#+M4OVE#+DIFF#bEMBD#,UP) )

C(Z (EMBD Gil) (EM4BD GR))
SV, IFLr,~R+DEOE4DP ~DIFFF..EMBD# U-3)
R DEP#+1OV#DFF.EM8O, UP (~ #MV#+lp -4D,UP)))

((EMBDGi),(Sc4BDGR))
(~V, DE.P#+MOVFD.e.6IFF#..tMBD# UP) (DEEP#.,40VE#+DIFF#+EMBD#,JP))

V DIFF#+E&4BD#,US),(CDIFF+LdrA~t~rR#.DEPE4BDI,SP)))

((Z (EMBD GR) (EMBD GR))

N~t#AV#6IF+rB#m (DF+~ALr#DE#EID SP))

((Z (EMBD GR),(E4BDL Gil ))

( ( (rID GiP,(0E4BDI+LGRD OLr R Ui (DIFF.LGAD,.L.G3TR+Et4D#,HP))

V DIFLr#H (DEEP#D.MOV#.DIFF#+r4BDbUP)))



( ~ i im # (Z E Q jr E BD UP DIFF+uW rao Hm))
DIFLrk+ REMDp, ?EPO.4%)V~E#IF #E.4BD.L~rAD.LGTR,Jd)))

( (Z(DLEP#.MOVDE#+tlF#+PI4BO# LK)4 ( DEEP#D4cVE#,DIFF#gE48D#+t.3rR#DL))
VA FP+09+lF#iB#L #Lr LII) (DIFF+Lj3TA#.LvrR.48D#,HP))
(V(DtFF+L~qrRD,II4),(DEEP#D OVED.DtIFD..+BDI,LK)))

( (Z (DEEPe.1tOVE#DIFF#..A4BoD.L.GrR#,LK) (DSEPe4 OVE#DlFFe.4AD,Lc))
IV (DF-P#e.40VEO.DIF'D+E1BD# L'() (DIOF.L3TR# HM))
(V, (DIFF+LGTA#+LGrSl+EJBD#,HP), (6qP#OVE#.6FF#A BD+LTA#LTR,L))

( (Z (DIFFO.E,4BDO L44) (DIFFO.&4BD94.GrR# US))
V VDSSPD+MOV&D+DtFF#.+EiBDD.LGrA#LGiR LUH) (DIFF+L~rA#+LGrRR.4BDU,IIP))
(V,(DIFF+LGra#,H!4) ,(DEEP.4OVDEP+DIFFDr.?I5Oup)))

( (Z(DIFFO+EMBD#+LGrR# tIM), s(DIFFO.&4BD# UM))
~VA(oP.ovF.+DIE #.EA 0# UP ) (DF+.L~r WIM)
((DIF'F+LGrA#+LarR+EiqBD,Hp), (EEP+OV#+IFF#+E4BD.LGA#.LGTR, tHl)))

(Z (Z FF#&M4BD# 1) DIFF#e+i4BD# UIM)

V,(DEEP#MQ4VF.DIFFD.EFl8D#, LK) , DEEPb44OVeD#+DIFFD.EABD#, UP))

( (Z(DEP+MOVE#+0tlFD*#iBD# UP) DEEP#+MOVF.DIFF#.FMBDD, UP))
VDIF#+eEtBD# U14)( ME ME+lF+.B#L

( (Z (DSEP#.MOVE#hDIFF..EMBDD,UP) ,(DEEPF+MOVE#.DLFF#E.SMBDD,UP))

C (Z (DE#40E+lF+MD PDEEP#+.MOV#+DIFD.EMBD,UP))

V,(EMBD,GR),(&MBD GR))
(V,(DIFF+LGrA.LGrR;.DEEP#t.BDD,SP),(DIFF#+EA4BD,US)))

( ZDEO,0F#+IF+-BOUi (DEEP,MOV'GDIFF# .EM DD,UP))

DlFF+L&AD+LGTS) DIFLGB#D,,HFF,+4BD...Dr,LTR,))

( ( DEP#,4V-z+DFF#F.BD#L~#UP) (DEEPOV VE#.DI F F+r4 BD.UP))
(Z (DEDlOD+EDIFF)D+lFFDD r ~j*~(iFFl~rDLT.ABDH

VDIFF.O4A#TR.M,(I.4MBD , M) ) jJ+EB#L~A+~r,4
( (Z DEEP9*,4V.DIFFPDEMBD#,UP) (DE +OE#D F#E4D+~a# ?

DIFFDN+I4BD#DLUrA,(D+LA D+LOrLGTRBDDD#sM)
VDIFF.LGTrA.,R)(IoFsP,.EBDe,UsP) ,DFDEiBDU)
( (Z 9EP#MOV9+DlF#+EBD# UP) (DSEP#.MOVE#.DIF#4MD#, UP))

DIFF#+E.48D9 UM),(DIFF.Lar +L*DPD+BD SP

( D..MOVU.IrALr#L .EE*BD P) (DIV9FF DABD,UP))
( (Z E#+MOVE+DlFF#E~M? UD.E)IFMf.9MDIFFUP)) #,P

VIDFFL~r+DEPOEMD#FSMBDIFF)) )PM

,DIF'FD4EiBD UM) (DIFFi+EiAiJ# LIM)
(V,( DELP#D 3VF.D,DIF #EABD#,UP),IFF..EABD,U4)))
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VAMBDGR),RBD,GR

(4-DLG]

(?-JUNCTIONS)

C ? (EMBD GR

?,RBDGRS, 148D,GR)

(POImt-JUNCTIOmS]

( (V(D9P.+OVE#+DIFF#D.MBD# LLC (DEEP#D OVED.DIFF#hE.'4BDD LWC)
iVCDEEPO.MOVE#.DIFF#.i4bDL ), Di :EEP#D.OVE#DDIFF#+Eid8b#:LC)
(V:(DFP..MOV.#DIFF+Ei:BDL)( D9EP#+MOVE#.DIFF#+EtdBDD, LK)
CV,M(DP#e4OVE#+DIFFD+9MBD#,LK) , (DEEP"i4OV#DIFF#+Et4BD#,LK)) )

( (Z (DEEP#DMOVF.+DIFF+Et4BDO LK) (D9F.P#+4VE#DIFF#.Ez4BD# LWC)
~V,(DEP#+MVE#+eDIFF#+Ef4BbtLQ), D9P+4V#DF#E~#L)
CV, (DEPD4.MOVED+DIFF#+EL4BDDLK), (DEEPO.2VE#+DtFF#+De#8D Lf)
CV, (DEEPD#e4OVED.DIFF#.EMBD#,LK) , CDEEPD.MOViED+DIFF#D.MBD#,LK) )

C (V (EM13D GR) (EM4BD Gl))
(:DI F+LdrA.LG1RD#+DEEP+BD I,SP) CDI FF#+EMBDD, US))

SV (DEEP#D.MOVE+DIFFhE~IBD#,MS) (D P r+Lr# Di'?.4BD# SP))
V, (DIFF LGTR+DEEP#+it4BD#,S&4) , (6 Pte+tOVEDiDIFF#+gr4BD#, UP))

C (V (EI4BD GR),CEMBD GR))
(:DE&P.e44OVED.6IFF#E&'BDD#,UP) DIFF+LGTR+DEEP#.EMBD#,SM))

SV DIFLr *~R+DE~EPD+ECBND'SP (DEEPD+MOVEh+DIF #+E,4BDD,MS))
VDIFF#+Et4BD#,US ),C DIFF..LGrA+I GrR i.DEEP.+tBD#,SP))

( (V,(DIFFhEMIBDDUMl) (DIFF.LGTR+DEP+Elt4D*,SM))
V, (DIFF+LG.TA+LGrA#DDEPD+EMBD#,SPI (DIFF D+EIBDDS)
V(DEEPD.44OVE#.DIFF#.Er4BD# MS) (DI +FLGrA.LGrRD+D EP DE:IBD# SP)
V, (DIFF.LGrR+DEEP#.E4BD#,1) ,( 6EEP#.MOV~~E#DIFF#.+E4BD#,UP))

( (V DIFF.LGrR.DEEP#.EMBD#,S4),*(DIFFD+EMBDD UM4)
V,(DEEPD41OVE#,DIFF+Ei4BD#,UP) ,(DIFF+LGtR.D.EP#+EtBDD,&4))

V: IFFL~r+L~R#+EEP+EcBD#SP)(D9P+M'OVE#*DIFF#+EABDD,MS))

EPgNrA-JUN%-rzo~S]

((C CEMBD GR) (EMBD GR))
tV, (DIfr-.L4A+LGfiRDiDEP#.EMBD#,SP) (DI FF D.EtBD# U3 p
(V (DEEPI444OVE#+DIFFD+E.MBD#,UP ),DEPD4+MOVED*DIk *NlsABD#,LK)
C ( DEEPD#+MOVED..DIFFD.EI4BDD,LK ),( DEEPt+MO0VbE#+DIFF#.EMB8D#,U?))

c (CEtBD R),(E&MBD GR))
V,(D99P#i4sVE#.6IFF#.EMBD#,UP )( DEEPD+M4OVg#.DIFF#D4BD#, LLC)
(,DSEP#4IOVE#.DIFF#.SlBD# LK)' DSEP#D.OV9D.DIFF#D.4BD#,UP))

(V: DIFF#.EMBD#,US) ,(DIFF.L&A flrR#.DEP#+9,4BD#,sP)))

C(C (DIFFD.E-4BDD ,U4) (DIFF+L-rRO.DEEPD.gr4BDP &s))
SV:1 IFLr+GA+EP4EB#S 6DF+4D US)
(V: ,0E#DFF+MB#UP Di#MOVE#DlFt#.-' BDD LKl

CV DEO,0EDIFEtB ,K ,Dc.P#O4VE#DIFF+E14BD#,UP~

((C (DIFF.LO? +DEP#+EM~BDD,&4),(DIFF.EM!BDt Un))
SV,iCDF P#.MOVED,+DIFFD.Sn4BD#,UP )(D3EP#.M6VE#.DIFF#il4BD#,LK

I EP+OE+IF+MD K.DE#MV#DF#EB#Ui
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(C (EX8D ),8;ABD GR)

(Dr.P.MV&06FFOEMB?4D#,UP), (DEEP#eO4V.DlF#+S.i8D9,LW)
SV C Dt"P#+A$OV.#+DIFF..iMSDL), DZEP#MV9+DF+&tD#,LK))

(DMEP+MOV~fDlFF#+Fi4BL )D, DP..MOVEG.DIFFD.'IRD*,UP)))

C(C,(DIFF#+&4MBDD U14) (DIIFD.MBDD UN))
V. (DEEPO+MOVLODDFF#+.4BDD:,P 5,( EPOi.?tVEODOFFD.FhDD, Ll)
V DEP#.+MOVe#+DIFF#.EMBDL ), SEP#+.4V#DIFF#+EL4BD#,LK)

CV, (DE?.P#+MOVE#+DIFFt+El4BDO,LK ), D-:EPO+MOVE#+DtFF,+l4BD#,UP))

C(Z (ENBD GR),(M8BD OR))

NDk#MV#+IF+ID V,( #%0F,+IF#eDEEP#+MOV'EI.DIFFf.eMBDD, LK ),( DEP#4OVEDDIFF.*Z18D*,LK
V, DEEPD.%tOVE#+DIFF#+F.MBD#,LK ,DEEP#MOTE#.DtF#.S4BD#,U?))

((Z (DIF.El4BD# UMI) (DtFF#.E,'48D# UM))

N ,DEEP#e OVNDfFF#E.MO, UP DSP+( 9#DFF+AB#LVDeEP#.MOVEDIFF#+MBD# LiC ii(
(V, (0 P#+,MQVE#DIFF#+MBD#,LiC) ,DEEP#..iOVE#DIFD.MBDO UP))

EG-5]

(?-jumcrioms 3

C EMBD REMD:)
? EMD:Gi SVIDGR

i?:IE46D ,G , IMBOGRil)li

cpo Iur-JuNCTIoN4S 3

((V (DEEP#.M0VE#DIFF#+E,4BD# LK),(DEP#MOViZ#D'F#+&ABD# LW)

(DEEPe.MoVrm.DIFF#+LMDL b ,L (DE#%Oi+IF#EB#L)
(V: DEP#4MOVe+DF#+ BI, LK i'DEEP#D,NOVE#DIFF#IMBDLC
V, DEEP#.MOVE#+DIFF#+tBDDLK) DEP#OVE#.DIFF#.&4BD, LiC L
'V EP.%0E+IF+,tDK, DEEP#+MOVE#+DIFF#+ElMBD#,LK

(CZ (DE#,0E+IF+%ID LK) (DEEP#.M0VE#+Dt F#+F43D# LW)
VDEEP#+,M)VE#.DIFF#.E.MBb#,Lki, DSEPfMOVEDIFF.E8B6L~

~V D;E-P#+MOVE#+DIFF#+SMBD0, LK ,Di"EP#+MO0VE#.DIFF#D.,EABDILK 1
ivDEP#+iOVE#DIFF#.EMBD#,LK S, DEEP#4OV#+DIFF#+E4BD#, LKi

(V: DSP#+.MVE#+DIFF#.E$BD#,LK), (DEEPO.N3VE.DrFF#.EMBD#,LK)))

((V (E11 GlMBE.1D -R))

SV DEEPG..%tOV'ED+DtFF#+Ei3DD, UP , DP-10MOVE#.DIF +E4BDPL
V D-'EPO+MOVED..DIFF#+MBDL DIFF*LGrA+LGrR#4D,--EPI+C'. C;SP))

V:DIFF+L4GTR+DEEP#+EMBD&) 6E'P#OV.DIFF4.E-'4BD#,UP))I

(V (ENBD iGR) (EM18D GR))

VDIFF+.GTB0DmUS EBD A,,W #MV#),F+.'B#L

((V (EMBD GR),(F.MBD GM)
~V, (O-P#+OVED4.6IFF..EBDD UP), (DIFF.LOR.DIFF#.EBD, .1))

(V DIFF+LGrA+L~rRDE'P# 8D# , P) (DSEP#M'OVe#4DIFF .SE1BDLS))

V, (D--.P#+.3VE#DIFF#+&4BD# LK),JD--.P + OVE#DDFFD4. 1BDD,Up) S
CV, (DIFFF#.BD#,US),(DIFFLjALvetR0.D --P#4.--.1BO,SP)))
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((V~ ~FF#+A'4BDUM) (DIFF+LGTR+DEEP#+EMBDODMI)
DIFF.LGTA+LGTA DDEPEPtBDSP)A(D14 MsE.tBD# US))L)

V: DEEP#.NOVED.DIFFD.+$3DDL# SDIFF+LGTA.LGtrg#DEEP#.EKt8D# SP)
IV, DIFF.LGTR.DEEP#hEMBD#,S$), I5EPh+M0V9#+DLPFDf.EBD#, UP))5

( (V (DIFFI+E4BD#,U14) (DIIFF.GrR.DEEPe.EMIBD# WI)
SV, (DtP.LGTA+L~rA#.DEEP+E4BDI SP) (DIF DeE94BD#, US))
V1 DEEPD.+4OVE#.DIFF#+E,4BDD,MS VE +LT+L#.DPD*Et4BD O ) )
VI DIFF.L^VR+DZEP#*Ei4BD# 3IM 6P# ALE* +D41FF# + 4BD W )
V: DEEP,.$O IED.DIFF#.EHBb#,LK),( (DEPfMOVE#.DIFF#SE4Bb#,UP)))

( (V (DIFF*LGTR.DEEP#.MBD,4) ,(DIFF#+Ei4BD# UM))
4 V DEEPD+M4OVE#.DIFFf.Et8Df, UP) (DSEP#,IVE#.DIFF*+9J4BDt, LK)
V: (DEEPe+M)VE#.DIFFD.EIBD#,LK) , (DIFF4LGTR+DEEP#4er4BDD,&4))
V, DIFF..4.GrA+L~rRD.EP#+Ei$BD SP) (DEEP#.$OVE#DOFF#.E.iBI#,MS))
V1 (DIFFD..E$BDD,US), (DIFF+LGTA. Gr I.DEDPiiBD#,SP)))

((V1 (DFF.L%'Th.DZEPD.EMBDf,SM), IFF#+ECIBD#tR Um)) 4DDSi)
:DE#t4VODF#E#&ILDIFRDEP+,BOFLGrA+LurRf+DEEP#.EtjBD' 5P )(DEEP#+MOVE#.DIFF# ES If LS))

V, DEEP#.MOVE#.DIFF#.&iBDD, P), (DIFF+G0-#DF#+tB#U)

iV ' DIFFI.E$BDD,US),(DIFFL6rA+LTRD.DEPIEBD#,SP)))

(PEN rA-juNc rio~s]

((C (ELIBD GR) (EM SD GR))
SV, (DI fF+Lg4'TA+LGRf+DEP#eEMBDDSP) (DIFF#D.iMBDO US))
,(DSEPf.MOV Z#.DlFF#4EMBD#, UP) DE PD.+IOVF.I*DI.tEMBDf ,LK)
(DEEPI.4IOVED+DIFF#.&iBD#,LN) DEP#D.MOVE#.DIFF#.EA8D#,LK)

(V, (DEeP#. 40VE#.DIFI.MBDDLK) ,(DEEP#.MOVED.DIFFD+tIBD#,UP)))

( (CI(EAIBD GR),(&.4BD GR))
SV, (DE.!P#.MVEOi+6IFF#+E4BD#,UP) (D8EP#+4OVEI.+DIFF#*E4BDt LW)
CV, DEEP#.MOVE#.DIFF.E,48DI,LK) (DEEP#+.MOVED+DIFFI#+I4BD# LK)
(V D.EP#MOVE#+DIFF +EMBD#,LK), (DSEPf+M0V*E#DIFF#s.EM8D#,UP))

(V: DIFF9+Ei$BD#,US), (DIFF LTA4.GTR#,DEEPI+EM4BD#,SP)))

((C,(DIFF#+2MBD#,UA4) (DIFF+LGrR.DLEP#+EM8D# SM))
SV:(DIFFLGTA4LGrA#DDEPI4EMBDI,SP), DIFt+EMzBDf US))
VDEEPD.MOVE#.DIFF+E4BDfD, U)(DEEP#I+MOVE#.DIFF#+E4BDI, LK)

EP#+MOVE#.DIFF#.ABD#,LK , DEEP#D OVE#+DDIFfD.Et4BD#, LK

C( DEPF.L4R.E#PDIFEMBD, ) ,(DFD+M D IF))OK)

(V, DEEPO.MOVIED+DIFF#+EMBD#,LK( , DEEP#+M4OVE#.DIFFD+E4BD#,LKC)
iV~i DEEP#I4MVE*+DIFF#+EMB#,LKj, DEEP#.MO0VE#+DIFF#.EL4BD#,UP))
(V,(DIFFD.&4BDD,US),(DIFF+L~~rA+LGrR#+DEEP#.Ei\4BDD,SP)))

((C (EMhBD GI) (E8BD GR))

VD PD+AOVEI46FF+EM8D:UP 
:D'EP#I4OVE#DIFF#4E$BDDL111VDEgP#e.XOV9#eDIFF#*EMBD#,LK ,DEEP#+MOVE#+DIFF#+EttBDIP B

C ( (DFIE#4SD40 DIFF .EABD KD9E#.4V#DF#68#
V: DEEP#*.40VOVDIFF#+EM4BD* ,LK , DEP#VE*.OIFF#..EMBD#,LK

DEEPMe~OVE#.D.fF#+EMBDD,UP , DPe.P#4OVE#.DIFF#.S(4BD# LK)
V: D9EP#e.$OV~fDIFF..Et4DDLK ,DEEPD.X\OVE#+DIFF#.EMBDDLK

iV, DFEPO.NOVe#DIFF#D4EMBDILK , DS9P#D.$OV#DIFFD+.iABD#,UP

((Z,(Ei4BD GR) (EABD OR))
Y, (DEkPtDMOV9f4I1FF+EBDD UP) (DiEP#+MOVE#.DIFF..Eu4BD#,LK))
(V (D39PD.+4VZ#.DIFF#+Et4BD#,LK) : DEEPf.MOVEf.DIFF#EIBD#,LK)
(V, (DEP#+t43V.DIFFF.'BDDLK) ,(DEEP#D.OVE9O.DIFD#. 14B,),LKO
V , (DZEPO+A0VE#DD FI# BD#,LK),(DSEP0FJVE#+DIFFf.&4BD#,Jk'))
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C(Z DIF#hEMBDD UMj 4 DIFF#4.4BDD I M#)
D, EPO.NOV#+ IF#+D#.UL I D31PD.40O+DIFFD.+i48DD LK))

V:DEEP#+M~OVD+DIFFD4.EMBD# :*,#.Og#DF#FB#L
v DEP#+MOVE#DIFF#e.&48DDLK )(DiFP#40YU.DFF#,+i4BD# LK)

IV:DEP#+OV#+DFF+&4D#LK )(D9EPD#tIOYV9.DIFF#+E,4BDF, UP)

CEND-OF-vuRrices]
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Appendix E

Image Formats

E.1. General Image Format

Images of any resolution and pixel sizes from 1 bit to 36 bits may

be encoded. Optional user information may be encoded. Several such

option fields commonly used are included in this description. Programs

are available for digitizing images into 252x238x6 bit, 252x238x9 bit,

and 504x476x6 bit forms.

Field(word) Description

0 Picture Length (Image+Header)1-3 UP RIGHT, L[rr Links/Markers
(See Color Triples)

4 Atom Type (Always a 2)
5 Highest X Pixel Coordinate (X Dimension

Minus 1) - High X
6i' est Y Pixel Coordinate (Y Dimension

Mnus 1) - High Y
7 Number f Gray levels (Quantization Steps

-for 6 bit images 5 4h steps) - GL
8 Minimum Pixel Value - in I

Maximum Pixel Value - Max I
1 Avora Pixel Value - Ave I
11 Offset to Pixel Pointer List
12 Offset to Picture Data

13-15 Offsets to Interleaved Picture Data
(Only for 504x476xb bit pictures
directly from the imaging rotines)

16-(15+m) User's Fields (a is words of user's
fields)

I.
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Commonly Computed Fields

Pixel Size ( C( C(0(11) ) ) .and. 007700303030 )/10333303

User Fields Length z C( 0(11) ) - 0(16)

Offset to First Picture Word (Pixel [High Y,0]) a C( 0(12) )

Offset to Pixel X,Y a Offset to First Picture Word + C( 0(11) +
X ,*(X:HighYf .md. (35/Pixel Size) ) )X (Y fHigh Y (31Pixel Size)

n .and. a a Logical "AND" of n and 2; 0M n Offset n;
n .mod. m a Remainder of n/m; Cn) a Contents of n;

Common User Defined Fields Description

16 Time (in Milliseconds) Since Last
Image Was Taken (for picture sequences)

17 Edge Speeds (See Edge Pictures) - e Speed 1

18 edge Position Modifier Field size
(See Edge Pictures) - 9 Pos

9.2. Color Image Triples

Color images are stored as sequences of Images consisting of a

blac/white image followed by one or more single color images (red,

green, or blue spectral. All images are in the general image format.

The red, green, or blue images may be omitted. Tne red image is

associated with the UP link in the black/white image. The green image I
is associated with RIGHT, and the blue with LEFT. If a link field of

the black/white image is non-zero, the associated colored image is

available for reading.

E.3. Image Format for Edges

The output of all the edge detection systems described in this

thesis are in the form of image triples. The first image is the input

gray scale image (dimensioned (High X + 1) by (High f + 1)). Tne next

is a Y 9dge image having one pixel for each junction of pairs of pixels

in the gray scale image lying on a vertical line. The dimension if this

image is (High X + 1) by (High Y). Following is the X 9dge image,

having one pixel for each junction of pairs of pixels in the gray scale

image lying on a horizontal line. This image is dimensioned (High X) by

,.., ... .. .. ,._ ... : w e ;,-
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(High Y 1).

Each non-zero pixel in an edge picture represents a significant

intensity transition WiLn maximum tendency between the corresponding

gray scale image pixels. The edge orientation is horizontal (in the r
Edge image) or vertical (in the X Edge image). Edge pixels carry edge

type, transition size, and fine positioning fields. Edge type fields

require no bits or one bit. Transition size field requires the number

bits needed to encode the maximum edge speed (see Edge Speed field in

the general image format section). The edge speed is an index to the

edge mask that matched the local intensity phenomenon. This noMinally

requires numbers from I to 6. The basic position of an edge is

speOified by its location in the picture matrices, however, for fine

tuning position plus or minus 0.5 pixel positions the edge position

modifier field is used (E pos). The size of this field is variable

(see Edge Position Modifier field in the general image format section).

Edge Pixel Schematic

El Fos CE ee ii - 4.1p

4 peo.D1Up4t Ed~eo1 d7 e p
Edge Position Fine Tuning

E pospos 2 2*iE p0 - I

Position For X 9dge At X,Y = (X + (E poe - E pospos/2)/E pospos,r)

Position For Y Edge At X,Y a (X,Y (EE poe - E pOsposI2)/E pospos)

E.4. Image Format for Regions

The data sets produced after region aggregation consist of image

quadruples. The first is an intensity image, the second is a region

index image (same dimension as the intensity image), and the last two

are X and Y edge images (formatted as in edge data sets). Each pixel in

the region image contains a region marcing numoer. This number indexes

into a region list. Each region has one region list entry, containing

the following fields:

Ii
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Field(word) Description

I XC Center Of Mass

2 1C Center Of Mass
3 Average Intensityth
Al ICfor aPixeI in tt.R:gion

I for a Pixel in the Region
Formation Order
XC Edge Density
Yf Edge Density

9 Perimeter
10 Standard Deviation of Intensity
11 Perimeter gEith Fra~s. of Picture

The region list is written as a binary list formatted as follows:

Words Description

1 HighIC forOri-inl-- ma-
1 High X for Original Image
1 Gray Levels for Original Image
1 Time original Image Wias Digitized
IRegion List AtO3L

1012 vlords of Region List Atoms

9.5. V-S And V-S-S Format L
Vertex-String[-Surface] (V-St-SD) format graphs are written in

binary to the filing system as lists Of atoms and links: I
Words Description

1 High C for- rigina----- ;
1 High XC for Original Image
1 Hga Leel for Original. Iage

1~ ~ Ga rim e l Ot onal... In& I--mange -S
1SrigAt (Op ia.In) V33 ntV

m10 WoSrdsg oftring tM s
1 Eode Poin tomsg Atom
I Eds Pofn Atdge Pon)tm
1 Vertex Atoms (1)
104 Words of Vertex Atoms

1 Vertex-String Associations (Q)
j Words of Ver ex-String Associations

Optional ... in V-S-S format:
I Region Atoms (i)

i012 Words Of Region Atoms
(See Region List Fori~t for Each Entry)
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String Atoms:

Field(word) Description

0 Edges(18 18>, Real Edges(0, 18>
I RO (leftj<18,18>, R1 (right)(0,18>

2 Average Gray Level in RO
Average Gray Level in RI
Average (Gray Level *02 in 83
Average 'Gray Level)"02 in R1
Averae Gray Level RO - Gray Level R1)0#2
Averae Do undrg DiffUsion
Low Vertex(1 I High Vertex<0,18>

9 Low Edge Index<18,18), High Edge Index<0,18>

*O(n,,> notation: n is field Positton (bits right of the field)
M is field 3iZe (in bits)

Edge Atoms:

Field~word) Description

0. Subjective/Objective<35, 1>,
Transition Size<2d ,7>,
Edge Index(14 10>

1 Strint.Index<6,1'I>
1 X P0tion

2 Y Position
3 Tangent Angle (Radians)

Vertex A 023:
Field( word) Description

0 X Position
1 Y Position
2 Position Uncertainty
3 Psdo/Real<35 1>,

Vertex-String Association Low<18 17,
Vertex-String Association High<0,1 ~>

Vertex-String Associations:

Field(word) Description

0 Vertex Index<18 18>,
String Index<0, '7>
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9.6. H-C Format

The Half Chunk Graph format is used internally to the multi-image

correlation system, and is written to provide input to the object

recognition system. when written, the format is as follows:

Words Description

1 Time Elapsed Since Last Packet
1 Total Time Elapsed

Frame Intervals in This Packet
OOjects Detected (Connected H-C
Graphs After Qoject Segmentation) - a

m'8 Words of Object Atoms
I Number of Regions/Surfaces - n
n Words of Object-Surface 3Associations
1 Number of H-C Atoms - i

ig7 Words of H-C Atoms
1 Number of XfZ Atoms - i (Same as H-C's)

1#4 Words of XfZ Atoms
I Number of H-C Associations - Jzi4
J Words of H-C Associations/LinKs:

E-link, Side 0
E-link, Side I
X-link1 Side 0
X-link, Side I

Object Atom Format:

Field(word) Description

0 Oo j ect Type Flags
Obiect Is 2-d<35,1>
Object Type<33,2>,j ype# rype Description

Signifigant Oo e.-t
I Insignificant Object
2 Lighting Effect Object
3 3round [Occluded) Object

Transform Type<30,2>,
Typet Typo Description

3-d Translation, 3-d Rotation
1 3-d translation, 2-d Rotation
2 -d Translation Only
3 Io Transform

Object Has Curvqd H-C's<32,1>
1 Low H-C Index<1d, 18>,

High H-C Index<0 18>
2-4 X Y, Z Translations
5-7 Alpha, Beta, Gamma Rotation Angles

kvI

........ ... i
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Haif Chunk Atom Format (l-C):

Field(word) Description

0 Type FlaIs<18,18>,
/3D,

Curved/Vertex,
Object/Non-obje~t/Lighting

Surface Association<0,19>
I TangentlChlange in Tangent2 Length Side

Length Side 1
Properties Side 05 Properties Side I

ProD Prop Description
0_3# Intensity Cnops
4 Boundary Diffusion
5 Absolute Lightness (Darkest,

Lightest)
6 Relativ Li~htness (Dark/Light,Light7Dark)

Tan ency DifferenceRatio Variance
18 Side Variance

Reflective Variance
11 Roughness
12 Real/Subjective Index
14 Depth Variance

Mo ion Variance
15 Region Embgddedness Index

6 Labeling Side 018 18>,
Labeling Side 1<0,i8>

Linked,
Unlinked+,
Unlinked-
Pure Highlight ,
Pure Highlight-,
Pure Shadow+,
Pure Shadow-
Unlinked- & Ground,
Uulinked & Snadow+,
Unlinked- & Snadow ,
Unlinked+ & Hignlight+,
Unlinked- & Highlight+,
Linked & Snadow ,
Linked & Highlight+

Optional... Not in H-C Format Written to Filing System:

X Center
Y Center
X Side 3
YSide 0

11 X Side 1
12 Y Side I
13 Spare Word
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XYZ Atom Format:

Field(word) Description

0 ICurved/Vertex<35, 1>,
Associated H-C Index Numbr<18,17>,
2D/3D<17,1>,
Frame Number<0,17> O ot on Written XYZ)

1 X Coordinate for H-C Center
2 Y Coordinate for H-C Center
3 Z Coordinate for H-C Center (0 for 20)

Object-Surface Association:

Field(word) Description

0 Surface/Region Number<18,18>,
Object Graph Number<0,17>

E.7. Ooject Library Format [
Streams of object packets are read by the recognition program, one

isolated subgraph at a time, to be incorporated into the object library.LI

This is done by either matching an existing object library entry or by

forming a new one (if no initial object library file exists, the first

object matches nothing and is used to begin a library). Library files

are made up of a components list, followed by a stream of object graphs

(expressed in terms of references to the atoms in the components list):

Words Description

1 Number of H-C Prototypes in the
Components List - m

m*2 Words of t-C Prototype Atoms
1 Number of Object Graphs - n .

n§23 Words of Ooject Graph Directory Entries
? Object Graphs, Each Start on a New Block

Boundary

Object Graph 
Format:

Words Description

1 Number of H-C Component Indexes - z
m Words of H-C Component Indexes
m*5 H-C Links:

E-link Side 0
E-link, Side I
X-link, Side 0
X-link:, Side 1
R-link

~j *.I
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h-C Component Format:

Field(word) Description

0 Aon-shape Properties, Side 0<18,8>,
Non-shape Properties, Side 1<27,8>

(selected from H-C Properties)
Length Ratio Property<0,18>

1 Curvature Angle (Change of Tangent)
Property<18,1>

Index into Components List<0,18>
Object Graph Directory Entry Format:

Field(word) Description

0 Object Graph First Block<0,18>,
Ext ension Graph First Block<18,18>

1 Blocks in Graph<0,18>
Time Entry Was Made<16,18>

2 Pointer To first Order Histogram
(In Memory Only)<0,19>,

Histogram Offset
(In Memory Onl)<18 18>

3 Index To First Object Graph<O,1>
(In Extension Graph Entries),

4-19 Object Name

1.

1.
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Appendix F

Programs and Functions

Ii

F.1. Required by All:

LIBVIS.RLL Vision and Graphics Runtime Library
FASLIB.REL Picture Digitizing Runtime Library
VISION.BSG Vision and Grapnics REQ'd Files
TTYIO.BEG Terminal input/Output
NUMIO.BEG Numerical Input/Output
FILIO.BEG File Input/Output
MISC.BEG Keyword Processing
CALLI.BEG System Calls
MAIN.BEG Prologs and Ecilogs
FLOA7.BEG Floating ?oint Conversions
PICTUR.BE3 Picture Format Definitions
STRUCT.BS3 Array Definitions
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F.2. Main Line System

Prograz(.lang) Requires Description

PSNAP(.BLISS) Frame Integratecs Imaes
Reads From Silicon Vidicon
Writes To a Picture File

SM(.BLISS) Smooth-Enhance
Reads and Writes Picture Files

EDGSS(.BLISS) EP.BEG Detect Variable Transition Ed9es
E.BEG -Multiple Template Operator

Reads From a ?icture File
Writes Edge Triple File

FILTER(.BLISS) EP.BEG Remove Isolated Edges
Reads and Writes Edge Triple Files

REGION(.BLISS) AREA.BEG Detect Connected Regions
PI.BEG -Multiple Homogeneity Operators
EP.BEG Reads Edge Triple Fi le

Writes Region Quad Files
Writes Region Lists Files

ELIST(.BLISS) EP.BEG Make Edge Lis1s
SQ.BEG Reads Region Quad Files
PI.BEG Writes Edge Lists Files
STRING.BEG

STRING(.BLISS) SQ.BEG Make V-S Graphs
PI.BEG Reads Edge Lists Files
COMPAR.BEG Writes V-S Files
STRING.BEG

REGSTR(.BLISS) STATS.BEG Make V-S-S Graphs
SQ.BEG Reads V-S Files
PI.BEG Reads Region Lists Files
STRItIG.BEG writes V-S-S Files
AREA.BEG Writes Statistical Summary Files

SMLSTR(.BLISS) SQ.BEG Resegment V-S-S Graphs
PI.BEG Reads and Writes V--S Files
STRING.BEG
AREA.BEG

CORLAB(.BLISS) CORLAB.BEG Convert V-S-S Graphs to H-C Graphs
SQ.BEG Correlate H-C Graphs for Depth
STRING.BEG Correlate H-C Graphs for ,Ito ion
AREA.BEG Label H-C Graphs and Form Object
PI.BEG Graphs from Isolated Subgrapns
STATS.BEG Reads V-S-S Graphs
HC.BEG Reads Parameter Files

CORLAB.CCL Reads Vertex/Region Labels Files
Writes H-C Files

GHIST(.BLISS) PI.BEG Label Objects, Form Object Libraries
SQ.BEG Reads H-8 Files
HC.BEG Reads Object Library Files
CL.BEG Writes Oject Library Files
GHIST.CCL

I.
[



1I74

F.3. Other Progra'ns

Prograz( .lang) Description

CHEESE(.BLISS) Take 252x2 38x6 Bit or 504x476x6 Bit Image Sequences
-Color or 1!W

FREEZE(.BLISS) Take 252x235x6 Bit Motion Sequence
SM2(.BLISS) Smootn-Ennance Images
EXLSQ( .BLISS) Expand-Squeeze Resolution
P11 ( .BLISS) Display Gray Scale/Color Images
BPIXS (.BLISS) Display Binary Pictures
D(.BLISS) Display Binary Pictures On Plasma Panel
EPLOT (.BI) Display Edge Datection Plots
-EXAM( .BLISS) Display Edge Triples andiRegion Quad Files
RAMR(.BLISS) DisplaX in Color Edge Triples and Region

Quad tiles
E7LIST(.BLISS) Display Edge Lists Files
PZTR( BLI5SI Display Re ion ListsjSV-S and V-S-S Files03
DISPO(.BLISS) Display H_ PFile3 (DISPO.60L)
SEELIBC .SLISS) Print Object Liorary Directory Information.

XEDGES(.BLISS) Edge Detection - Adaptive Thresnold Metrhod
ER(.BLISS) Edge Detection - Rosenfeld, Yakimc,sky,

Linear Difference
EW(.BLISS) Edge Detection - Hueckel, PsUedo-Hueckcel

ARITH(.BLISS) Picture Arithmetic [
ES(.BLISS) Merge Edge Files For Color-Texture

Superposition
MA(.BL7:SS) Makie Textured Regions Masu
SMILEX( MACRO) Cxpand-Reduce Image Resolution/Camera System [
PRINTIC MACRQ) Expand-Reduce Image Resolution/Piles
EPAiLA ( .LISS) Compute Edse Detector Parameters'
ETUNEA.LISS) Plot Edge Detector Tuning Plots
LDX(.BLISS) Plot Edge Detector runing Plots
SEDKC.BLISS) Plot Edge Detector Tunin Plots
FRAMED(.BLISS) Select a Window from an !mage
PHIST(.BLISS) Plot Histograms, Slices from Image Files

DHr .BLISSl Plot Image as 3 3-D FunctionQ
hNS :BLISS Estimate Image Noise Statistics

EM,(.BLISS) Edge Texture Image Generator
CTOM( .BLISS) V-5:S Binary Format To ASCII List Format
MTOC(C.BLISS) V-S-S ASCII List Format to Binary Format
MREGS(.BLISS) Merge Region List Entries
RSET(.BLISS) Make Artificial Images
RCVT(.BLISS) Scale Colors For Image Display
RVSPAC (.BLISS) Edit V-S-S Sequences
PSPACE ( .SLISSl Edit Edge Triples Sequences
M(.BLISS) Edit Image Sequences

2"*-* -
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